- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 统计
- + 统计案例
- 回归分析
- 独立性检验
- 计数原理
- 概率
- 随机变量及其分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
下列关于残差图的描述错误的是()
A.残差图的纵坐标只能是残差. |
B.残差图的横坐标可以是编号、解释变量和预报变量. |
C.残差点分布的带状区域的宽度越窄残差平方和越小. |
D.残差点分布的带状区域的宽度越窄相关指数越小. |
为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:
已知在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为
.
(1)请将上面的列联表补充完整;
(2)是否在犯错误的概率不超过0.5%的前提下认为喜爱打篮球与性别有关?说明你的理由.下面的临界值表供参考:
(参考公式:
,其中
)
| 喜爱打篮球 | 不喜爱打篮球 | 合计 |
男生 | | 5 | |
女生 | 10 | | |
合计 | | | 50 |
已知在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为

(1)请将上面的列联表补充完整;
(2)是否在犯错误的概率不超过0.5%的前提下认为喜爱打篮球与性别有关?说明你的理由.下面的临界值表供参考:
![]() | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005] | 0.001 |
![]() | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(参考公式:



对长期吃含三聚氰胺的婴幼儿奶粉与患肾结石这两个分类变量的计算中,下列说法正确的是
A.若![]() ![]() ![]() ![]() ![]() |
B.从独立性检验可知有![]() ![]() |
C.若从统计量中求出有![]() ![]() |
D.以上三种说法都不正确 |
通过随机询问110名不同的大学生是否爱好某项运动,得到如下的列联表:
由
附表:
参照附表,得到的正确结论是( )
| 男 | 女 | 总计 |
爱好 | 40 | 20 | 60 |
不爱好 | 20 | 30 | 50 |
总计 | 60 | 50 | 110 |
由

附表:
![]() | 0.050 | 0.010 | 0.001 |
![]() | 3.841 | 6.635 | 10.828 |
参照附表,得到的正确结论是( )
A.有99%以上的把握认为“爱好该项运动与性别有关” |
B.有99%以上的把握认为“爱好该项运动与性别无关” |
C.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关” |
D.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关” |
在中老年人群体中,肠胃病是一种高发性疾病某医学小组为了解肠胃病与运动之间的联系,调查了50位中老年人每周运动的总时长(单位:小时),将数据分成[0,4),[4,8),[8,14),[14,16),[16,20),[20,24]6组进行统计,并绘制出如图所示的柱形图.

图中纵轴的数字表示对应区间的人数现规定:每周运动的总时长少于14小时为运动较少.
每周运动的总时长不少于14小时为运动较多.
(1)根据题意,完成下面的2×2列联表:
(2)能否有99.9%的把握认为中老年人是否有肠胃病与运动有关?
附:K2
(n=a+b+c+d)

图中纵轴的数字表示对应区间的人数现规定:每周运动的总时长少于14小时为运动较少.
每周运动的总时长不少于14小时为运动较多.
(1)根据题意,完成下面的2×2列联表:
| 有肠胃病 | 无肠胃病 | 总计 |
运动较多 | | | |
运动较少 | | | |
总计 | | | |
(2)能否有99.9%的把握认为中老年人是否有肠胃病与运动有关?
附:K2

P(K2≥k) | 0.0.50 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
某学校为了制定治理学校门口上学、放学期间家长接送孩子乱停车现象的措施,对全校学生家长进行了问卷调查.根据从中随机抽取的50份调查问卷,得到了如下的列联表:
则认为“是否同意限定区域停产与家长的性别有关”的把握约为__________ .
附:
,其中
.
| 同意限定区域停车 | 不同意限定区域停车 | 合计 |
男 | 20 | 5 | 25 |
女 | 10 | 15 | 25 |
合计 | 30 | 20 | 50 |
则认为“是否同意限定区域停产与家长的性别有关”的把握约为
附:


![]() | 0.050 | 0.005 | 0.001 |
![]() | 3.841 | 7.879 | 10.828 |
独立性检验显示:在犯错误的概率不超过0. 1的前提下认为性别与是否喜爱喝酒有关,那么下列说法中正确的是( )
A.在100个男性中约有90人喜爱喝酒 |
B.若某人喜爱喝酒,那么此人为女性的可能性为10% |
C.认为性别与是否喜爱喝酒有关判断出错的可能性至少为10% |
D.认为性別与是否喜爱喝酒有关判断正确的可能性至少为90% |
某市环保部门对该市市民进行了一次垃圾分类知识的网络问卷调查,每位市民仅有一次参加机会,通过随机抽样,得到参与问卷调查的100人的得分(满分:100分)数据,统计结果如表所示:
(1)若规定问卷得分不低于70分的市民称为“环保关注者”,请完成答题卡中的
列联表,并判断能否在犯错误概率不超过0.05的前提下,认为是否为“环保关注者”与性别有关?
(2)若问卷得分不低于80分的人称为“环保达人”.视频率为概率.
①在我市所有“环保达人”中,随机抽取3人,求抽取的3人中,既有男“环保达人”又有女“环保达人”的概率;
②为了鼓励市民关注环保,针对此次的调查制定了如下奖励方案:“环保达人”获得两次抽奖活动;其他参与的市民获得一次抽奖活动.每次抽奖获得红包的金额和对应的概率.如下表:
现某市民要参加此次问卷调查,记
(单位:元)为该市民参加间卷调查获得的红包金额,求
的分布列及数学期望.
附表及公式:
组别 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
男 | 2 | 3 | 5 | 15 | 18 | 12 |
女 | 0 | 5 | 10 | 10 | 7 | 13 |
(1)若规定问卷得分不低于70分的市民称为“环保关注者”,请完成答题卡中的

(2)若问卷得分不低于80分的人称为“环保达人”.视频率为概率.
①在我市所有“环保达人”中,随机抽取3人,求抽取的3人中,既有男“环保达人”又有女“环保达人”的概率;
②为了鼓励市民关注环保,针对此次的调查制定了如下奖励方案:“环保达人”获得两次抽奖活动;其他参与的市民获得一次抽奖活动.每次抽奖获得红包的金额和对应的概率.如下表:
红包金额(单位:元) | 10 | 20 |
概率 | ![]() | ![]() |
现某市民要参加此次问卷调查,记


附表及公式:

![]() | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
某校为了了解学生对电子竞技的兴趣,从该校高二年级的学生中随机抽取了
人进行检查,已知这
人中有
名男生对电子竞技有兴趣,而对电子竞技没兴趣的学生人数与电子竞技竞技有兴趣的女生人数一样多,且女生中有
的人对电子竞技有兴趣.
在被抽取的女生中与
名高二
班的学生,其中有
名女生对电子产品竞技有兴趣,先从这
名学生中随机抽取
人,求其中至少有
人对电子竞技有兴趣的概率;
完成下面的
列联表,并判断是否有
的把握认为“电子竞技的兴趣与性别有关”.
参考数据:
参考公式:














| 有兴趣 | 没兴趣 | 合计 |
男生 | | | |
女生 | | | |
合计 | | | |
参考数据:
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
参考公式:
