- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 统计
- + 统计案例
- 回归分析
- 独立性检验
- 计数原理
- 概率
- 随机变量及其分布
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
莫言是中国首位获得诺贝尔文学奖的文学家,国人欢欣鼓舞。某高校文学社从男女生中各抽取50名同学调查对莫言作品的了程度,结果如下:
(1)试估计该学校学生阅读莫言作品超过50篇的概率.
(2)对莫言作品阅读超过75篇的则称为“对莫言作品非常了解”,否则为“一般了解”,根据题意完成下表,并判断能否有
的把握认为“对莫言作品的非常了解”与性别有关?
注:K2=
阅读过莫言的作品数(篇) | 0~25 | 26~50 | 51~75 | 76~100 | 101~130 |
男生 | 3 | 6 | 11 | 18 | 12 |
女生 | 4 | 8 | 13 | 15 | 10 |
(1)试估计该学校学生阅读莫言作品超过50篇的概率.
(2)对莫言作品阅读超过75篇的则称为“对莫言作品非常了解”,否则为“一般了解”,根据题意完成下表,并判断能否有

| 非常了解 | 一般了解 | 合计 |
男生 | | | |
女生 | | | |
合计 | | | |
注:K2=

P(K2≥k0) | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 |
k0 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
《西游记女儿国》是由星皓影业有限公司出品的喜剧魔幻片,由郑保瑞执导,郭富城、冯绍峰、赵丽颖、小沈阳、罗仲谦、林志玲、梁咏琪、刘涛等人领衔主演,该片于2017年电影之夜获得年度最受期待系列电影奖,于2018年2月16日(大年初一)在中国内地上映.某机构为了了解年后社区居民观看《西游记女儿国》的情况,随机调查了当地一个社区的60位居民,其中男性居民有25人,观看了此片的有10人,女性居民有35人,观看了此片的有25人.
(1)完成下面列联表:
(2)根据以上列联表,能否在犯错误的概率不超过0.05的前提下,认为“该社区居民是否观看《西游记女儿国》与性别有关”?请说明理由.
参考公式:
.
附表:
(1)完成下面列联表:
性别 | 观看此片 | 未观看此片 | 合计 |
男 | | | |
女 | | | |
合计 | | | |
(2)根据以上列联表,能否在犯错误的概率不超过0.05的前提下,认为“该社区居民是否观看《西游记女儿国》与性别有关”?请说明理由.
参考公式:

附表:
![]() | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828| |
某工厂某产品产量
(千件)与单位成本
(元)满足回归直线方程
,则以下说法中正确的是( )



A.产量每增加![]() ![]() | B.产量每减少![]() ![]() |
C.当产量为![]() ![]() | D.当产量为![]() ![]() |
下列说法中,正确说法的个数是( )
①在用
列联表分析两个分类变量
与
之间的关系时,随机变量
的观测值
越大,说明“
与
有关系”的可信度越大
②以模型
去拟合一组数据时,为了求出回归方程,设
,将其变换后得到线性方程
,则
的值分别是
和0. 3
③已知两个变量具有线性相关关系,其回归直线方程为
,若
,
,则
①在用







②以模型





③已知两个变量具有线性相关关系,其回归直线方程为




A.0 | B.1 | C.2 | D.3 |
为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样的方法从该地区调查了500位老年人,结果如下:

附:
的观测值
(1)估计该地区老年人中,需要志愿者提供帮助的老年人的比例;
(2)在犯错误的概率不超过0.01的前提下是否可认为该地区的老年人是否需要志愿者提供帮助与性别有关?
(3)根据(2)的结论,能否提出更好的调查方法来估计该地区的老年人中,需要志愿者提供帮助的老年人的比例?请说明理由.

附:


(1)估计该地区老年人中,需要志愿者提供帮助的老年人的比例;
(2)在犯错误的概率不超过0.01的前提下是否可认为该地区的老年人是否需要志愿者提供帮助与性别有关?
(3)根据(2)的结论,能否提出更好的调查方法来估计该地区的老年人中,需要志愿者提供帮助的老年人的比例?请说明理由.
2022年北京冬奥运动会即第24届冬季奥林匹克运动会将在2022年2月4日至2月20日在北京和张家口举行,某研究机构为了了解大学生对冰壶运动的兴趣,随机从某大学生中抽取了100人进行调查,经统计男生与女生的人数比为
,男生中有20人表示对冰壶运动有兴趣,女生中有15人对冰壶运动没有兴趣.
(1)完成
列联表,并判断能否有
把握认为“对冰壶运动是否有兴趣与性别有关”?
(2)用分层抽样的方法从样本中对冰壶运动有兴趣的学生中抽取6人,求抽取的男生和女生分别为多少人?若从这6人中选取两人作为冰壶运动的宣传员,求选取的2人中恰好有1位男生和1位女生的概率.
附:
,其中

(1)完成


| 有兴趣 | 没有兴趣 | 合计 |
男 | 20 | | |
女 | | 15 | |
合计 | | | 100 |
(2)用分层抽样的方法从样本中对冰壶运动有兴趣的学生中抽取6人,求抽取的男生和女生分别为多少人?若从这6人中选取两人作为冰壶运动的宣传员,求选取的2人中恰好有1位男生和1位女生的概率.
附:


![]() | 0.150 | 0.100 | 0.050 | 0.025 | 0.010 |
![]() | 2.072 | 2.076 | 3.841 | 5.024 | 6.635 |
2018年双11当天,某购物平台的销售业绩高达2135亿人民币.与此同时,相关管理部门推出了针对电商的商品和服务的评价体系,现从评价系统中选出200次成功交易,并对其评价进行统计,对商品的好评率为0.9,对服务的好评率为0.75,其中对商品和服务都做出好评的交易为140次.
(1)请完成下表,并判断是否可以在犯错误概率不超过0.5%的前提下,认为商品好评与服务好评有关?
(2)若将频率视为概率,某人在该购物平台上进行的3次购物中,设对商品和服务全好评的次数为X.
①求随机变量X的分布列;
②求X的数学期望和方差.
附:
,其中n=a+b+c+d.
(1)请完成下表,并判断是否可以在犯错误概率不超过0.5%的前提下,认为商品好评与服务好评有关?
| 对服务好评 | 对服务不满意 | 合计 |
对商品好评 | 140 | | |
对商品不满意 | | 10 | |
合计 | | | 200 |
(2)若将频率视为概率,某人在该购物平台上进行的3次购物中,设对商品和服务全好评的次数为X.
①求随机变量X的分布列;
②求X的数学期望和方差.
附:

P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
利用独立性检验的方法调查高中性别与爱好某项运动是否有关,通过随机调查200名高中生是否爱好某项运动,利用2×2列联表,由计算可得K2≈7.245,参照下表:得到的正确结论是( )
![]() | 0.01 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
A.有99%以上的把握认为“爱好该项运动与性别无关” |
B.有99%以上的把握认为“爱好该项运动与性别有关”、 |
C.在犯错误的概率不超过0.5%的前提下,认为“爱好该项运动与性别有关” |
D.在犯错误的概率不超过0.5%的前提下,认为“爱好该项运动与性别无关” |
某校数学课外兴趣小组为研究数学成绩是否与性别有关,先统计本校高三年级每个学生一学期数学成绩平均分(采用百分制),剔除平均分在
分以下的学生后,共有男生
名,女生
名.现采用分层抽样的方法,从中抽取了
名学生,按性别分为两组,并将两组学生成绩分为
组,得到如下所示频数分布表.
(Ⅰ)规定
分以上为优分(含
分),请你根据已知条件作出
列联表.
(Ⅱ)根据你作出的
列联表判断是否有
以上的把握认为“数学成绩与性别有关”.
附表及公式:
,其中
.





分数段 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
男 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
女 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
(Ⅰ)规定



| 优分 | 非优分 | 合计 |
男生 | | | |
女生 | | | |
合计 | | | ![]() |
(Ⅱ)根据你作出的


附表及公式:
![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() |


为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样的方法从该地区调查了500位老年人,结果如下:
附:
的观测值
(1)估计该地区老年人中,需要志愿者提供帮助的老年人的比例;
(2)在犯错误的概率不超过0.01的前提下是否可认为该地区的老年人是否需要志愿者提供帮助与性别有关?
性别 是否需要志愿者 | 男 | 女 |
需要 | 40 | 30 |
不需要 | 160 | 270 |
附:


![]() | 0.05 | 0.01 | 0.001 |
![]() | 3.841 | 6.635 | 10.828 |
(1)估计该地区老年人中,需要志愿者提供帮助的老年人的比例;
(2)在犯错误的概率不超过0.01的前提下是否可认为该地区的老年人是否需要志愿者提供帮助与性别有关?