根据如下的样本数据:








 
得到的回归方程为,则直线经过定点(    )
A.B.C.D.
当前题号:1 | 题型:单选题 | 难度:0.99
改革开放以来,伴随着我国经济持续增长,户均家庭教育投入户均家庭教育投入是指一个家庭对家庭成员教育投入的总和也在不断提高我国某地区2012年至2018年户均家庭教育投入单位:千元的数据如表:
年份
2012
2013
2014
2015
2016
2017
2018
年份代号t
1
2
3
4
5
6
7
户均家庭教育投入y







 
求y关于t的线性回归方程;
利用中的回归方程,分析2012年至2018年该地区户均家庭教育投入的变化情况,并预测2019年该地区户均家庭教育投入是多少.
附:回归直线的斜率和截距的最小二乘法估计公式分别为:
当前题号:2 | 题型:解答题 | 难度:0.99
某产品生产厂家的市场部在对4家商场进行调研时,获得该产品售价单位:元和销售量单位:件之间的四组数据如表: 
售价x
4


6
销售量y
12
11
10
9
 
为决策产品的市场指导价,用最小二乘法求得销售量y与售价x之间的线性回归方程,那么方程中的a值为  
A.17B.C.18D.
当前题号:3 | 题型:单选题 | 难度:0.99
某单位为了了解用电量(度)与当天平均气温(°C)之间的关系,随机统计了某4天的当天平均气温与用电量(如右表)。由数据运用最小二乘法得线性回归方程,则__________.
平均气温(°C)
18
13
10
-1
用电量(度)
25
35
37
63
 
当前题号:4 | 题型:填空题 | 难度:0.99
如图是某公司一种产品的日销售量(单位:百件)关于日最高气温(单位:)的散点图.

数据:

13
15
19
20
21

26
28
30
18
36
 
(1)请剔除一组数据,使得剩余数据的线性相关性最强,并用剩余数据求日销售量关于日最高气温的线性回归方程
(2)根据现行《重庆市防暑降温措施管理办法》.若气温超过36度,职工可享受高温补贴.已知某日该产品的销售量为53.1,请用(1)中求出的线性回归方程判断该公司员工当天是否可享受高温补贴?
附:.
当前题号:5 | 题型:解答题 | 难度:0.99
某公交公司为了方便市民出行,科学规划车辆投放,在一个人员密集流动地段增设一个起点站,为了研究车辆发车间隔时间x与乘客等候人数y之间的关系,经过调查得到如下数据:
间隔时间x/分
10
11
12
13
14
15
等候人数y/人
23
25
26
29
28
31
 
调查小组先从这6组数据中选取4组数据求线性回归方程,再用剩下的2组数据进行检验.检验方法如下:先用求得的线性回归方程计算间隔时间对应的等候人数,再求与实际等候人数y的差,若差值的绝对值都不超过1,则称所求方程是“恰当回归方程”.
(1)从这6组数据中随机选取4组数据,求剩下的2组数据的间隔时间相邻的概率;
(2)若选取的是中间4组数据,求y关于x的线性回归方程,并判断此方程是否是“恰当回归方程”.
附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为:.
当前题号:6 | 题型:解答题 | 难度:0.99
初三年级为了增强学生体质,提高体育成绩,让学生每天进行一个小时的阳光体育活动.随着锻炼时间的增长,学生身体素质越来越好,体育成绩分以上的学生也越来越多.用表示月后体育成绩分以上的学生的百分比,得到了如下数据.






体育成绩分以上
学生的百分比





 
(1)求出关于的回归直线方程;
(2)试根据求出的线性回归方程,预测7个月后,体育成绩分以上的学生的百分比是多少?
参考公式:由最小二乘法所得回归直线的方程是其中,.
当前题号:7 | 题型:解答题 | 难度:0.99
某农场所对冬季昼夜温差大小与某反季大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了2019年12月1日至12月5日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如下表:
日期
12月1日
12月2日
12月3日
12月4日
12月5日
温差
10
11
13
12
8
发芽数y(颗)
23
25
30
26
16
 
该农科所确定的研究方案是:先从这五组数据中选取2组,用剩下的3组数据求线性回归方程,再对被选取的两组数据进行检验.
(1)求选取的2组数据恰好是不相邻的2天数据的概率;
(2)若选取的是12月1日与12月5日的两组数据,请根据12月2日至12月4日的数据,求出y关于x的线性回归方程;并预报当温差为时,种子发芽数.
附:回归直线方程:,其中
当前题号:8 | 题型:解答题 | 难度:0.99
某公司生产的某种产品,如果年返修率不超过千分之一,则其生产部门当年考核优秀,现获得该公司2011-2018年的相关数据如下表所示:
年份
2011
2012
2013
2014
2015
2016
2017
2018
年生产台数(万台)
2
3
4
5
6
7
10
11
该产品的年利润(百万元)
2.1
2.75
3.5
3.25
3
4.9
6
6.5
年返修台数(台)
21
22
28
65
80
65
84
88
部分计算结果:

 
注:年返修率=
(1)从该公司2011-2018年的相关数据中任意选取3年的数据,以表示3年中生产部门获得考核优秀的次数,求的分布列和数学期望;
(2)根据散点图发现2015年数据偏差较大,如果去掉该年的数据,试用剩下的数据求出年利润(百万元)关于年生产台数(万台)的线性回归方程(精确到0.01).
附:线性回归方程中, .
当前题号:9 | 题型:解答题 | 难度:0.99
某医疗科研项目组对5只实验小白鼠体内的两项指标数据进行收集和分析、得到的数据如下表:
指标
1号小白鼠
2号小白鼠

 

3号小白鼠

 

4号小白鼠

 

5号小白鼠
A
5
7
6
9
8
B
2
2
3
4
4
 
(1)若通过数据分析,得知项指标数据与项指标数据具有线性相关关系,试根据上表,求项指标数据关于项指标数据的线性回归方程
(2)现要从这5只小白鼠中随机抽取3只,求其中至少有一只的项指标数据高于3的概率.
参考公式:  
当前题号:10 | 题型:解答题 | 难度:0.99