为研究昼夜温差大小与某疾病的患病人数之间的关系,经查询得到今年上半年每月15号的昼夜温差情况与患者的人数如表:
日期
1月15日
2月15日
3月15日
4月15日
5月15日
6月15日
昼夜温差
10
11
10
10
9
7
患者人数
21
26
20
18
16
8
 
研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验.
若选取的是1月与6月的两组数据,请根据2至5月份的数据,求出y关于x的线性回归方程
若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问中所得线性回归方程是否理想?
参考公式:
当前题号:1 | 题型:解答题 | 难度:0.99
基于移动互联技术的共享单车被称为“新四大发明”之一,短时间内就风靡全国,带给人们新的出行体验某共享单车运营公司的市场研究人员为了解公司的经营状况,对该公司最近六个月内的市场占有率进行了统计,结果如下表:
月份






月份代码x
1
2
3
4
5
6
市场占有率
11
13
16
15
20
21
 
请在给出的坐标纸中作出散点图,并用相关系数说明可用线性回归模型拟合月度市场占有率y与月份代码x之间的关系;
y关于x的线性回归方程,并预测该公司2018年2月份的市场占有率;
根据调研数据,公司决定再采购一批单车扩大市场,现有采购成本分别为1000元辆和800元辆的AB两款车型报废年限各不相同考虑到公司的经济效益,该公司决定先对两款单车各100辆进行科学模拟测试,得到两款单车使用寿命频数表如下:
报废年限
车型
1年
2年
3年
4年
总计
A
10
30
40
20
100
B
15
40
35
10
100
 
经测算,平均每辆单车每年可以为公司带来收入500元不考虑除采购成本之外的其他成本,假设每辆单车的使用寿命都是整数年,且用频率估计每辆单车使用寿命的概率,以每辆单车产生利润的期望值为决策依据如果你是该公司的负责人,你会选择采购哪款车型?
参考数据:
参考公式:相关系数
回归直线方程为其中:
当前题号:2 | 题型:解答题 | 难度:0.99
某地区积极发展电商,通过近些年工作的开展在新农村建设和扶贫过程中起到了非常重要的作用,促进了农民生活富裕,为了更好地了解本地区某一特色产品的宣传费(千元)对销量(千件)的影响,统计了近六年的数据如下:

(1)若近6年的宣传费与销量呈线性分布,由前5年数据求线性回归直线方程,并写出的预测值;
(2)若利润与宣传费的比值不低于20的年份称为“吉祥年”,在这6个年份中任意选2个年份,求这2个年份均为“吉祥年”的概率
附:回归方程的斜率与截距的最小二乘法估计分别为
,其中的平均数.
当前题号:3 | 题型:解答题 | 难度:0.99
某工厂连续6天对新研发的产品按事先拟定的价格进行试销,得到一组数据如下表所示
日期
4月1日
4月2日
4月3日
4月4日
4月5日
4月6日
试销价
9
11
10
12
13
14
产品销量
40
32
29
35
44

 
(1)试根据4月2日、3日、4日的三组数据,求关于的线性回归方程,并预测4月6日的产品销售量
(2)若选取两组数据确定回归方程,求选取得两组数据恰好是不相邻两天的事件的概率.
参考公式:
其中
当前题号:4 | 题型:解答题 | 难度:0.99
根据如表数据,得到的回归方程为,则  
x
4
5
6
7
8
y
5
4
3
2
1
 
A.2B.1C.0D.
当前题号:5 | 题型:单选题 | 难度:0.99
某公司生产的某种产品,如果年返修率不超过千分之一,则其生产部门当年考核优秀,现获得该公司2011-2018年的相关数据如下表所示:
年份
2011
2012
2013
2014
2015
2016
2017
2018
年生产台数(万台)
2
3
4
5
6
7
10
11
该产品的年利润(百万元)
2.1
2.75
3.5
3.25
3
4.9
6
6.5
年返修台数(台)
21
22
28
65
80
65
84
88
部分计算结果:

 
注:
(Ⅰ)从该公司2011-2018年的相关数据中任意选取3年的数据,以表示3年中生产部门获得考核优秀的次数,求的分布列和数学期望;
(Ⅱ)根据散点图发现2015年数据偏差较大,如果去掉该年的数据,试用剩下的数据求出年利润(百万元)关于年生产台数(万台)的线性回归方程(精确到0.01).
附:线性回归方程中,.
当前题号:6 | 题型:解答题 | 难度:0.99
某公司为了提高利润,从2012年至2018年每年对生产环节的改进进行投资,投资金额与年利润增长的数据如下表:
年份
2012
2013
2014
2015
2016
2017
2018
投资金额(万元)







年利润增长(万元)







 
(1)请用最小二乘法求出关于的回归直线方程;如果2019年该公司计划对生产环节的改进的投资金额为万元,估计该公司在该年的年利润增长为多少?(结果保留两位小数)
(2)现从2012年—2018年这年中抽出三年进行调查,记年利润增长投资金额,设这三年中(万元)的年份数为,求随机变量的分布列与期望.
参考公式:.
参考数据:.
当前题号:7 | 题型:解答题 | 难度:0.99
如图是某台大型设备使用时间(单位:年)与维护费用(单位:千元)的散点图.

(1)根据散点图,求关于的回归方程
(2)如果维护费用超过120千元,就需要更换设备,那么根据(1)中模型的预测,估计该设备最多可以使用多少年?
附:①参考数据:=63;② 一组数据,其回归方程的斜率和截距的最小二乘估计公式分别为:.
当前题号:8 | 题型:解答题 | 难度:0.99
下表记录了某公司投入广告费与销售额的统计结果,由表可得线性回归方程为,据此方程预报当时,__.

4
2
3
5

49
26
39
54
 
附:参考公式:
当前题号:9 | 题型:填空题 | 难度:0.99
某面包店推出一款新面包,每个面包的成本价为元,售价为元,该款面包当天只出一炉(一炉至少个,至多个),当天如果没有售完,剩余的面包以每个元的价格处理掉,为了确定这一炉面包的个数,以便利润最大化,该店记录了这款新面包最近天的日需求量(单位:个),整理得下表:
日需求量





频数





 
(1)根据表中数据可知,频数与日需求量(单位:个)线性相关,求关于的线性回归方程;
(2)若该店这款新面包每日出炉数设定为
(i)求日需求量为个时的当日利润;
(ii)求这天的日均利润.
相关公式:
当前题号:10 | 题型:解答题 | 难度:0.99