- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 相关关系
- 散点图
- 回归直线方程
- + 最小二乘法
- 求回归直线方程
- 最小二乘法的概念及辨析
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某小区为了调查居民的生活水平,随机从小区住户中抽取
个家庭,得到数据如下:
参考公式:回归直线的方程是:
,其中,
.
(1)据题中数据,求月支出
(千元)关于月收入
(千元)的线性回归方程(保留一位小数);
(2)从这
个家庭中随机抽取
个,记月支出超过
千家庭个数为
,求
的分布列与数学期望.

家庭编号 | 1 | 2 | 3 | 4 | 5 | 6 |
月收入x(千元) | 20 | 30 | 35 | 40 | 48 | 55 |
月支出y(千元) | 4 | 5 | 6 | 8 | 8 | 11 |
参考公式:回归直线的方程是:



(1)据题中数据,求月支出


(2)从这





科研人员在对人体脂肪含量和年龄之间关系的研究中,获得了一些年龄和脂肪含量的简单随机样本数据,如下表:

根据上表的数据得到如下的散点图.

(1)根据上表中的样本数据及其散点图:
(i)求
;
(ii)计算样本相关系数(精确到0.01),并刻画它们的相关程度.
(2)若y关于x的线性回归方程为
,求
的值(精确到0.01),并根据回归方程估计年龄为50岁时人体的脂肪含量.
附:参考数据:
参考公式:相关系数
回归方程
中斜率和截距的最小二乘估计公式分别为

根据上表的数据得到如下的散点图.

(1)根据上表中的样本数据及其散点图:
(i)求

(ii)计算样本相关系数(精确到0.01),并刻画它们的相关程度.
(2)若y关于x的线性回归方程为


附:参考数据:

参考公式:相关系数

回归方程


某地植被面积
(公顷)与当地气温下降的度数
(
)之间有如下的对应数据:
(1)请用最小二乘法求出
关于
的线性回归方程
;
(2)根据(1)中所求线性回归方程,如果植被面积为200公顷,那么下降的气温大约是多少
?
参考公式:用最小二乘法求线性回归方程系数公式:
,
.



![]() | 20 | 40 | 50 | 60 | 80 |
![]() ![]() | 3 | 4 | 4 | 4 | 5 |
(1)请用最小二乘法求出



(2)根据(1)中所求线性回归方程,如果植被面积为200公顷,那么下降的气温大约是多少

参考公式:用最小二乘法求线性回归方程系数公式:


某网店为增加其商品的销售利润,调查了该商品投入的广告费用
万元与销售利润
万元的统计数据如下表:
由表中数据,得回归直线
:
.现有以下三个结论:①
;②
;③
过点
.则正确的结论个数为( )


![]() | 1 | 2 | 4 | 5 |
![]() | 4 | 6 | 8 | 10 |
由表中数据,得回归直线






A.0 | B.1 | C.2 | D.3 |
“爱国,是人世间最深层、最持久的情感,是一个人立德之源、立功之本。”在中华民族几千年绵延发展的历史长河中,爱国主义始终是激昂的主旋律。爱国汽车公司拟对“东方红”款高端汽车发动机进行科技改造,根据市场调研与模拟,得到科技改造投入
(亿元)与科技改造直接收益
(亿元)的数据统计如下:
当
时,建立了
与
的两个回归模型:模型①:
;模型②:
;当
时,确定
与
满足的线性回归方程为:
.
(1)根据下列表格中的数据,比较当
时模型①、②的相关指数
,并选择拟合精度更高、更可靠的模型,预测对“东方红”款汽车发动机科技改造的投入为17亿元时的直接收益.
(附:刻画回归效果的相关指数
,
.)
(2)为鼓励科技创新,当科技改造的投入不少于20亿元时,国家给予公司补贴收益10亿元,以回归方程为预测依据,比较科技改造投入17亿元与20亿元时公司实际收益的大小;
(附:用最小二乘法求线性回归方程
的系数公式
;
)
(3)科技改造后,“东方红”款汽车发动机的热效率
大幅提高,
服从正态分布
,公司对科技改造团队的奖励方案如下:若发动机的热效率不超过
,不予奖励;若发动机的热效率超过
但不超过
,每台发动机奖励2万元;若发动机的热效率超过
,每台发动机奖励5万元.求每台发动机获得奖励的数学期望.
(附:随机变量
服从正态分布
,则
,
.)


![]() | 2 | 3 | 4 | 6 | 8 | 10 | 13 | 21 | 22 | 23 | 24 | 25 |
![]() | 13 | 22 | 31 | 42 | 50 | 56 | 58 | 68.5 | 68 | 67.5 | 66 | 66 |
当









(1)根据下列表格中的数据,比较当


回归模型 | 模型① | 模型② |
回归方程 | ![]() | ![]() |
![]() | 182.4 | 79.2 |
(附:刻画回归效果的相关指数


(2)为鼓励科技创新,当科技改造的投入不少于20亿元时,国家给予公司补贴收益10亿元,以回归方程为预测依据,比较科技改造投入17亿元与20亿元时公司实际收益的大小;
(附:用最小二乘法求线性回归方程



(3)科技改造后,“东方红”款汽车发动机的热效率







(附:随机变量




某汽车公司为调查
店个数对该公司汽车销量的影响,对同等规模的
四座城市的
店一季度汽车销量进行了统计,结果如下:

(1)根据统计的数据进行分析,求
关于
的线性回归方程;
(2)现要从
三座城市的10个
店中选取3个做深入调查,求
城市中被选中的
店个数
的分布列和期望.
附:回归方程
中的斜率和截距的最小二乘法估计公式分别为:
;
.




(1)根据统计的数据进行分析,求


(2)现要从





附:回归方程



某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间进行分析研究,他们分别记录了12月1日至12月5日的每天昼夜温差与实验室每天每100棵种子中的发芽数,得到如下资料:
该农科所确定的研究方案是:先从这5组数据中选取3组数据求线性回归方程,再用剩下的2组数据进行检验.
(1)若选取的3组数据恰好是连续
天的数据(
表示数据来自互不相邻的三天),求
的分布列及期望:
(2)根据12月2日至4日数据,求出发芽数
关于温差
的线性回归方程
.由所求得线性回归方稻得到的估计数据与剩下的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问所得的线性回归方程是否可靠?
附:参考公式:
.
日期 | 12月1日 | 12月2日 | 12月3日 | 12月4日 | 12月5日 |
温差![]() | 10 | 11 | 13 | 12 | 8 |
发芽![]() | 23 | 25 | 30 | 26 | 16 |
该农科所确定的研究方案是:先从这5组数据中选取3组数据求线性回归方程,再用剩下的2组数据进行检验.
(1)若选取的3组数据恰好是连续



(2)根据12月2日至4日数据,求出发芽数



附:参考公式:

随着网络的发展,网上购物越来越受到人们的喜爱,各大购物网站为增加收入,促销策略越来越多样化,促销费用也不断增加,下表是某购物网站
年
月促销费用
(万元)和产品销量
(万件)的具体数据.
(1)根据数据可知
与
具有线性相关关系,请建立
关于
的回归方程
(系数精确到
);
(2)已知
月份该购物网站为庆祝成立
周年,特定制奖励制度:用
(单位:件)表示日销量,若
,则每位员工每日奖励
元;若
,每位员工每日奖励
元;若
,则每位员工每日奖励
元.现已知该网站
月份日销量
服从正态分布
,请你计算某位员工当月奖励金额总数大约为多少元.(当月奖励金额总数精确到百分位)
参考数据:
,
,其中
分别为第
个月的促销费用和产品销量,
.
参考公式:①对于一组数据
,其回归方程
的斜率和截距的最小二乘估计分别为
,
.
②若随机变量
服从正态分布
,则
,
.




月份 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
促销费用![]() | 2 | 3 | 6 | 10 | 13 | 21 | 15 | 18 |
产品销量![]() | 1 | 1 | 2 | 3 | 3.5 | 5 | 4 | 4.5 |
(1)根据数据可知






(2)已知












参考数据:





参考公式:①对于一组数据




②若随机变量




随着我国经济的发展,居民的储蓄存款逐年增长,设某地区城乡居民人民币储蓄存款
(单位:亿元)的数据如下:

(1)求
关于
的线性回归方程;
(2)2018年城乡居民储蓄存款前五名中,有三男和两女.现从这5人中随机选出2人参加某访谈节目,求选中的2人性别不同的概率.
附:回归直线的斜率和截距的最小二乘估计公式分别为:
,
.


(1)求


(2)2018年城乡居民储蓄存款前五名中,有三男和两女.现从这5人中随机选出2人参加某访谈节目,求选中的2人性别不同的概率.
附:回归直线的斜率和截距的最小二乘估计公式分别为:

