- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 相关关系
- 散点图
- 回归直线方程
- + 最小二乘法
- 求回归直线方程
- 最小二乘法的概念及辨析
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某单位为了了解办公楼用电量
(度)与气温
(℃)之间的关系,随机统计了四个工作量与当天平均气温,并制作了对照表:
由表中数据,得线性回归直线方程
,若
,则
( )


气温(℃) | 18 | 13 | 10 | -1 |
用电量(度) | 24 | 34 | 38 | 64 |
由表中数据,得线性回归直线方程



A.60 | B.30 | C.55 | D.50 |
如图是2011年至2018年天猫双十一当天销售额
(单位:百亿元)的折线图,为了预测2019年双十一当天销售额,建立了
与时间变量
的线性回归模型.

(Ⅰ)根据2011年至2018年的数据(时间变量
的值依次为1,2,3,4,5,6,7,8),用最小二乘法,得到了
关于
的线性回归方程
,求
的值,并预测2019年(此时
)双十一当天销售额;
(Ⅱ)假设你作为天猫商城董事会成员,针对双十一当天销售额增长情况,给天猫商城管理层制定一个股权奖励方案.从2012年开始到2017年,如果该年度双十一当天销售对比上一年增长超过五成,则对天猫商城管理层进行股权奖励.从2012年到2017年中,求天猫商城管理层连续两年都能获得股权奖励的概率.
附:
,




(Ⅰ)根据2011年至2018年的数据(时间变量






(Ⅱ)假设你作为天猫商城董事会成员,针对双十一当天销售额增长情况,给天猫商城管理层制定一个股权奖励方案.从2012年开始到2017年,如果该年度双十一当天销售对比上一年增长超过五成,则对天猫商城管理层进行股权奖励.从2012年到2017年中,求天猫商城管理层连续两年都能获得股权奖励的概率.
附:


有一个同学家开了一个奶茶店,他为了研究气温对热奶茶销售杯数的影响,从一季度中随机选取5天,统计出气温与热奶茶销售杯数,如表:
(Ⅰ)求热奶茶销售杯数关于气温的线性回归方程
(
精确到0.1),若某天的气温为
,预测这天热奶茶的销售杯数;
(Ⅱ)从表中的5天中任取两天,求所选取两天中至少有一天热奶茶销售杯数大于130的概率.
参考数据:
,
.
参考公式:
,
.
气温![]() | 0 | 4 | 12 | 19 | 27 |
热奶茶销售杯数![]() | 150 | 132 | 130 | 104 | 94 |
(Ⅰ)求热奶茶销售杯数关于气温的线性回归方程



(Ⅱ)从表中的5天中任取两天,求所选取两天中至少有一天热奶茶销售杯数大于130的概率.
参考数据:


参考公式:


在2018年俄罗斯世界杯期间,莫斯科的部分餐厅经营了来自中国的小龙虾,这些小龙虾标有等级代码.为得到小龙虾等级代码数值
与销售单价
之间的关系,经统计得到如下数据:
(1)已知销售单价
与等级代码数值
之间存在线性相关关系,求
关于
的线性回归方程(系数精确到0.1);
(2)若莫斯科某个餐厅打算从上表的6种等级的中国小龙虾中随机选2种进行促销,记被选中的2种等级代码数值在60以下(不含60)的数量为
,求
的分布列及数学期望.
参考公式:对一组数据
,
,
,其回归直线
的斜率和截距最小二乘估计分别为:
,
.
参考数据:
,
.


等级代码数值![]() | 38 | 48 | 58 | 68 | 78 | 88 |
销售单价![]() | 16.8 | 18.8 | 20.8 | 22.8 | 24 | 25.8 |
(1)已知销售单价




(2)若莫斯科某个餐厅打算从上表的6种等级的中国小龙虾中随机选2种进行促销,记被选中的2种等级代码数值在60以下(不含60)的数量为


参考公式:对一组数据






参考数据:


某兴趣小组欲研究某地区昼夜温差大小与患感冒就诊人数之间的关系,他们分别到气象局与某医院抄录了1到5月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:
该兴趣小组确定的研究方案是:先从这5组数据中选取一组,用剩下的4组数据求线性回归方程,再用选取的一组数据进行检验.
(1)若选取的是1月的一组数据,请根据2至5月份的数据.求出
关于
的线性回归方程
.
(2)若由线性回归方程得到的估计数据与所选出的检验数据的误差不超过2,则认为得到的线性回归方程是理想的,试判断该小组所得的线性回归方程是否理想?如果不理想,请说明理由,如果理想,试预测昼夜温差为
时,因感冒而就诊的人数约为多少?
参考公式:
,
.
日期 | 1月10日 | 2月10日 | 3月10日 | 4月10日 | 5月10日 |
昼夜温差![]() | 8 | 10 | 13 | 12 | 9 |
就诊人数![]() | 18 | 25 | 28 | 26 | 17 |
该兴趣小组确定的研究方案是:先从这5组数据中选取一组,用剩下的4组数据求线性回归方程,再用选取的一组数据进行检验.
(1)若选取的是1月的一组数据,请根据2至5月份的数据.求出



(2)若由线性回归方程得到的估计数据与所选出的检验数据的误差不超过2,则认为得到的线性回归方程是理想的,试判断该小组所得的线性回归方程是否理想?如果不理想,请说明理由,如果理想,试预测昼夜温差为

参考公式:


春节期间,某销售公司每天销售某种取暖商品的销售额
(单位:万元)与当天的平均气温
(单位:℃)有关.现收集了春节期间这个销售公司
天的
与
的数据列于下表:
由以上数据,求得
与
之间的线性回归方程
的系数
,则
______





平均气温(℃) | ![]() | ![]() | ![]() | ![]() |
销售额(万元) | ![]() | ![]() | ![]() | ![]() |
由以上数据,求得





已知某商品的价格
(元)与需求量
(件)之间的关系有如下一组数据:
;
参考:
;
当
时 ,
,
(1)求
,
;
(2)求出回归直线方程;
(3)计算相关系数r的值,并说明回归模型拟合程度的好坏.


x | 14 | 16 | 18 | 20 | 22 |
y | 12 | 10 | 7 | 5 | 3 |


参考:


当


(1)求


(2)求出回归直线方程;
(3)计算相关系数r的值,并说明回归模型拟合程度的好坏.
已知某校6个学生的数学和物理成绩如下表:
(1)若在本次考试中,规定数学在80分以上(包括80分)且物理在75分以上(包括75分)的学生为理科小能手.从这6个学生中抽出2个学生,设
表示理科小能手的人数,求
的分布列和数学期望;
(2)通过大量事实证明发现,一个学生的数学成绩和物理成绩具有很强的线性相关关系,在上述表格是正确的前提下,用
表示数学成绩,用
表示物理成绩,求
与
的回归方程.
参考数据和公式:
,其中
,
.
学生的编号![]() | 1 | 2 | 3 | 4 | 5 | 6 |
数学![]() | 89 | 87 | 79 | 81 | 78 | 90 |
物理![]() | 79 | 75 | 77 | 73 | 72 | 74 |
(1)若在本次考试中,规定数学在80分以上(包括80分)且物理在75分以上(包括75分)的学生为理科小能手.从这6个学生中抽出2个学生,设


(2)通过大量事实证明发现,一个学生的数学成绩和物理成绩具有很强的线性相关关系,在上述表格是正确的前提下,用




参考数据和公式:



为了解某冷饮店的经营状况,随机记录了该店
月的月营业额
(单位:万元)与月份
的数据,如下表:
(1)求
关于
的回归直线方程
;
(2)若在这些样本点中任取两点,求恰有一点在回归直线上的概率.
附:回归直线方程
中,

,
.



![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
(1)求



(2)若在这些样本点中任取两点,求恰有一点在回归直线上的概率.
附:回归直线方程



