- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 解释回归直线方程的意义
- + 用回归直线方程对总体进行估计
- 根据回归方程求原数据中的值
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
一汽车销售公司对开业4年来某种型号的汽车“五-”优惠金额与销售量之间的关系进行分析研究并做了记录,得到如下资料.
(1)求出
关于
的线性回归方程
;
(2)若第5年优惠金额8.5千元,估计第5年的销售量y(辆)的值.
参考公式:
日期 | 第一年 | 第二年 | 第三年 | 第四年 |
优惠金额x(千元) | 10 | 11 | 13 | 12 |
销售量y(辆) | 22 | 24 | 31 | 27 |
(1)求出



(2)若第5年优惠金额8.5千元,估计第5年的销售量y(辆)的值.
参考公式:

某幼儿园雏鹰班的生活老师统计2018年上半年每个月的20日的昼夜温差
,
和患感冒的小朋友人数(
/人)的数据如下:
其中
,
,
.
(Ⅰ)请用相关系数加以说明是否可用线性回归模型拟合
与
的关系;
(Ⅱ)建立
关于
的回归方程(精确到
),预测当昼夜温差升高
时患感冒的小朋友的人数会有什么变化?(人数精确到整数)
参考数据:
.参考公式:相关系数:
,回归直线方程是
,
,



温差![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
患感冒人数![]() | 8 | 11 | 14 | 20 | 23 | 26 |
其中



(Ⅰ)请用相关系数加以说明是否可用线性回归模型拟合


(Ⅱ)建立




参考数据:




分某企业节能降耗技术改造后,在生产某产品过程中的产量
(吨)与相应的生产能耗
吨的几组对应数据如表所示:
若根据表中数据得出y关于x的线性回归方程为
,若生产7吨产品,预计相应的生产能耗为多少吨?


x | 3 | 4 | 5 | 6 |
y | 2.5 | 3 | 4 | 4.5 |
若根据表中数据得出y关于x的线性回归方程为

随着智能手机的普及,使用手机上网成为了人们日常生活的一部分,很多消费者对手机流量的需求越来越大.长沙某通信公司为了更好地满足消费者对流量的需求,准备推出一款流量包.该通信公司选了5个城市(总人数、经济发展情况、消费能力等方面比较接近)采用不同的定价方案作为试点,经过一个月的统计,发现该流量包的定价
:(单位:元/月)和购买人数
(单位:万人)的关系如表:

(1)根据表中的数据,求出
关于
的线性回归方程
;
(2)若该通信公司在一个类似于试点的城市中将这款流量包的价格定位25元/ 月,请用所求回归方程预测长沙市一个月内购买该流量包的人数能否超过20 万人.
参考公式:
,
.



(1)根据表中的数据,求出



(2)若该通信公司在一个类似于试点的城市中将这款流量包的价格定位25元/ 月,请用所求回归方程预测长沙市一个月内购买该流量包的人数能否超过20 万人.
参考公式:


某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四次试验,得到数据如下:
(Ⅰ)在给定的坐标系中画出表中数据的散点图(请在答题卡上作图!);
(Ⅱ)求出
关于
的线性回归方程
;(参考公式:
,
)
(Ⅲ)试预测加工10个零件需要多少时间?
零件的个数x(个) | 2 | 3 | 4 | 5 |
加工的时间y(小时) | 2.5 | 3 | 4 | 4.5 |
(Ⅰ)在给定的坐标系中画出表中数据的散点图(请在答题卡上作图!);
(Ⅱ)求出





(Ⅲ)试预测加工10个零件需要多少时间?
某市2011年至2017年新开楼盘的平均销售价格(单位:千元/平方米)的统计数据如下表:
附:参考公式:
,
,其中
为样本平均值。
参考数据:
,
.
(1)求
关于
的线性回归方程;
(2)利用(1)中的回归方程,分析2011年至2017年该市新开楼盘平均销售价格的变化情况,并预测该市2019年新开楼盘的平均销售价格。
年份 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 |
年份代号![]() | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
销售价格![]() | 3 | 3.4 | 3.7 | 4.5 | 4.9 | 5.3 | 6 |
附:参考公式:



参考数据:


(1)求


(2)利用(1)中的回归方程,分析2011年至2017年该市新开楼盘平均销售价格的变化情况,并预测该市2019年新开楼盘的平均销售价格。
某车间加工零件的数量x与加工时间y的统计数据如图:现已求得上表数据的回归方程
中的
值为0.9,则据此回归模型可以预测,加工100个零件所需要的加工时间约为( )




A.84分钟 | B.94分钟 | C.102分钟 | D.112分钟 |
某饮料公司根据市场调查数据分析得到以下结果:如果某款饮料年库存积压率低于千分之一,则该款饮料为畅销产品,可以继续大量生产.如果年库存积压率高于千分之一,则说明需要调整生产计划.现公司2013-2018年的某款饮料生产,年销售利润及年库存积压相关数据如下表所示:

注:年库存积压率
(1)从公司2013-2018年的相关数据中任意选取
年的数据,求该款饮料这
年中至少有
年畅销的概率.
(2)公司根据上表计算出年销售利润与年生产件数的线性回归方程为
.现公司计划2019年生产
千万件该款饮料,且预计2019年可获利
千万元.但销售部门发现,若用预计的2019年的数据与2013-2018年中畅销年份的数据重新建立回归方程,再通过两个线性回归方程计算出来的2019年年销售利润误差不超过
千万元,该款饮料的年库存积压率可低于千分之一.如果你是决策者,你认为2019年的生产和销售计划是否需要调整?请说明理由.
(参考公式:
,
,
)
第二次建立线性回归方程的参考数据:
,
.

注:年库存积压率

(1)从公司2013-2018年的相关数据中任意选取



(2)公司根据上表计算出年销售利润与年生产件数的线性回归方程为




(参考公式:




第二次建立线性回归方程的参考数据:



近期,某公交公司分别推出支付宝和微信扫码支付乘车活动,活动设置了一段时间的推广期,由于推广期内优惠力度较大,吸引越来越多的人开始使用扫码支付.某线路公交车队统计了活动刚推出一周内每一天使用扫码支付的人次,用
表示活动推出的天数,
表示每天使用扫码支付的人次(单位:十人次),统计数据如表所示:
根据以上数据,绘制了如图所示的散点图.

(1)根据散点图判断,在推广期内,
与
均为大于零的常数)哪一个适宜作为扫码支付的人次
关于活动推出天数
的回归方程类型?(给出判断即可,不必说明理由);
(2)根据(1)的判断结果及表l中的数据,求
关于
的回归方程,并预测活动推出第8天使用扫码支付的人次;
(3)推广期结束后,车队对乘客的支付方式进行统计,结果如表所示:
已知该线路公交车票价为2元,使用现金支付的乘客无优惠,使用乘车卡支付的乘客享受8折优惠,扫码支付的乘客随机优惠,根据统计结果得知,使用扫码支付的乘客,享受7折优惠的概率为
,享受8折优惠的概率为
,享受9折优惠的概率为
.根据所给数据以事件发生的频率作为相应事件发生的概率,估计一名乘客一次乘车的平均费用.
参考数据:
其中
,
.


![]() | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
![]() | 6 | 11 | 21 | 34 | 66 | 101 | 196 |
根据以上数据,绘制了如图所示的散点图.

(1)根据散点图判断,在推广期内,




(2)根据(1)的判断结果及表l中的数据,求


(3)推广期结束后,车队对乘客的支付方式进行统计,结果如表所示:
支付方式 | 现金 | 乘车卡 | 扫码 |
比例 | ![]() | ![]() | ![]() |
已知该线路公交车票价为2元,使用现金支付的乘客无优惠,使用乘车卡支付的乘客享受8折优惠,扫码支付的乘客随机优惠,根据统计结果得知,使用扫码支付的乘客,享受7折优惠的概率为



参考数据:
![]() | ![]() | ![]() | ![]() | ![]() |
66 | 1.54 | 2.711 | 50.12 | 3.47 |
其中


一机器可以按各种不同的速度运转,其生产物件有一些会有缺点,每小时生产有缺点物件的多少随机器运转速度而变化,用x表示转速(单位:转/秒),用y表示每小时生产的有缺点物件个数,现观测得到
的4组观测值为
.
(1)假定y与x之间有线性相关关系,求y对x的回归直线方程.
(2)若实际生产中所容许的每小时最大有缺点物件数为10,则机器的速度不得超过多少转/秒?(精确到1转/秒)
回归直线的斜率和截距的最小二乘估计公式分别为:
,
.


(1)假定y与x之间有线性相关关系,求y对x的回归直线方程.
(2)若实际生产中所容许的每小时最大有缺点物件数为10,则机器的速度不得超过多少转/秒?(精确到1转/秒)
回归直线的斜率和截距的最小二乘估计公式分别为:

