假设关于某设备的使用年限(年)和所支出的年平均维修费用(万元)(即维修费用之和除以使用年限),有如下的统计资料:
使用年限
2
3
4
5
6
维修费用
2.2
3.8
5.5
6.5
7.0
 
(1)求关于的线性回归方程;
(2)估计使用年限为10年时所支出的年平均维修费用是多少?
参考公式:
当前题号:1 | 题型:解答题 | 难度:0.99
某品牌餐饮公司准备在10个规模相当的地区开设加盟店,为合理安排各地区加盟店的个数,先在其中5个地区试点,得到试点地区加盟店个数分别为1,2,3,4,5时,单店日平均营业额(万元)的数据如下:
加盟店个数(个)
1
2
3
4
5
单店日平均营业额(万元)
10.9
10.2
9
7.8
7.1
 
(1)求单店日平均营业额(万元)与所在地区加盟店个数(个)的线性回归方程;
(2)该公司根据回归方程,决定在其他5个地区中,开设加盟店个数为5,6,7的地区数分别是2,1,2.小赵与小王都准备加入该公司的加盟店,但根据公司规定,他们只能分别从这5个地区的30个加盟店中随机抽取一个加入.记事件:小赵与小王抽取到的加盟店在同一个地区,事件:小赵与小王抽取到的加盟店预计日平均营业额之和不低于12万元,求在事件发生的前提下事件发生的概率.
(参考数据及公式:,线性回归方程,其中.)
当前题号:2 | 题型:解答题 | 难度:0.99
某公司为确定下一年度投入某种产品的宣传费需了解年宣传费(单位:千元)对年销售量(单位:)的影响.对近8年的年宣传费,和年销售量数据作了初步处理,得到下面的散点图及一些统计量的值.








46.6
563
6.8
289.8
1.6
1469
108.8
 
表中
附:对于-组数据,...,,其回归直线的斜率和截距的最小二乘估计分别为
(1)根据散点图判断,哪一个适宜作为年销售量关于年宣传费的回归方程类型?(给出判断即可,不必说明理由)
(2)根据(1)的判断结果及表中数据,建立关于的回归方程.
(3)根据(2)的结果计算年宣传费时,年销售量预报值是多少?
当前题号:3 | 题型:解答题 | 难度:0.99
“一带一路”沿线的20国青年评选出了中国“新四大发明”:高铁、支付宝、共享单车和网购.2019年春节期间,“支付宝大行动”用发红包的方法刺激支付宝的使用.某商家统计前5名顾客扫描红包所得金额分别为5.2元,2.9元,3.3元,5.9元,4.8元,商家从这5名顾客中随机抽取3人赠送饮水杯.

(1)求获得饮水杯的三人中至少有一人的红包超过5元的概率;
(2)统计一周内每天使用支付宝付款的人数x与商家每天的净利润y元,得到7组数据,如表所示,并作出了散点图.

(i)直接根据散点图判断,出哪一个适合作为每天的净利润的回归方程类型.
(ii)根据(i)的判断,建立y关于x的回归方程;若商家当天的净利润至少是1400元,估计使用支付宝付款的人数至少是多少?(abcd的值取整数)
参考数据:

附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为
当前题号:4 | 题型:解答题 | 难度:0.99
已知鸡的产蛋量与鸡舍的温度有关,为了确定下一个时段鸡舍的控制温度,某企业需要了解鸡舍的温度(单位:℃)对某种鸡的时段产蛋量(单位:)和时段投入成本(单位:万元)的影响,为此,该企业收集了7个鸡舍的时段控制温度和产蛋量的数据,对数据初步处理后得到了如图所示的散点图和表中的统计量的值.








17.40
82.30
3.6
140
9.7
2935.1
35.0
 
其中.
(1)根据散点图判断,哪一个更适宜作为该种鸡的时段产蛋量关于鸡舍时段控制温度的回归方程类型?(给出判断即可,不必说明理由)
(2)若用作为回归方程模型,根据表中数据,建立关于的回归方程;
(3)已知时段投入成本的关系为,当时段控制温度为28℃时,鸡的时段产蛋量及时段投入成本的预报值分别是多少?
附:①对于一组具有线性相关关系的数据,其回归直线的斜率和截距的最小二乘估计公式分别为.






0.08
0.47
2.72
20.09
1096.63
 
当前题号:5 | 题型:解答题 | 难度:0.99
近年来,某地区积极践行“绿水青山就是金山银山”的绿色发展理念年年初至年年初,该地区绿化面积(单位:平方公里)的数据如下表:
年份







年份代号







绿化面积







 
(1)求关于的线性回归方程;
(2)利用(1)中的回归方程,预测该地区年年初的绿化面积,并计算年年初至年年初,该地区绿化面积的年平均增长率约为多少.
(附:回归直线的斜率与截距的最小二乘法估计公式分别为
当前题号:6 | 题型:解答题 | 难度:0.99
噪声污染已经成为影响人们身体健康和生活质量的严重问题,为了了解声音强度(单位:分贝)与声音能量(单位:)之间的关系,将测量得到的声音强度和声音能量=1,2…,10)数据作了初步处理,得到如图散点图及一些统计量的值.







45.7


0.51



5.1
 
表中
(1)根据散点图判断,哪一个适宜作为声音强度关于声音能量的回归方程类型?(给出判断即可,不必说明理由)
(2)根据表中数据,求声音强度关于声音能量的回归方程;
(3)当声音强度大于60分贝时属于噪音,会产生噪音污染,城市中某点共受到两个声源的影响,这两个声源的声音能量分别是,且.己知点的声音能量等于声音能量之和.请根据(1)中的回归方程,判断点是否受到噪音污染的干扰,并说明理由.
附:对于一组数据.其回归直线的斜率和截距的最小二乘估计分别为:.
当前题号:7 | 题型:解答题 | 难度:0.99
高考复习经过二轮“见多识广”之后,为了研究考前“限时抢分”强化训练次数与答题正确率的关系,对某校高三某班学生进行了关注统计,得到如表数据:

1
2
3
4

20
30
50
60
 
(1)求关于的线性回归方程,并预测答题正确率是的强化训练次数(保留整数);
(2)若用)表示统计数据的“强化均值”(保留整数),若“强化均值”的标准差在区间内,则强化训练有效,请问这个班的强化训练是否有效?
附:回归直线的斜率和截距的最小二乘法估计公式分别为:
,样本数据,…,的标准差为
当前题号:8 | 题型:解答题 | 难度:0.99
某市一农产品近六年的产量统计如下表:
年份
2013
2014
2015
2016
2017
2018
年份代码
1
2
3
4
5
6
年产量(千吨)
5.1
5.3
5.6
5.5
6.0
6.1
 
观察表中数据看出,可用线性回归模型拟合的关系.
(1)根据表中数据,将以下表格空白部分的数据填写完整,并建立关于的线性回归方程
 






总和
均值

1
2
3
4
5
6
 
 

5.1
5.3
5.6
5.5
6.0
6.1
 
 

1
4
9
16
25
36
 
 

5.1
10.6
16.8
22
30
36.6
121.1
 
 
(2)若在2025年之前该农产品每千克的价格(单位:元)与年产量满足的关系式为,且每年该农产品都能全部销售.预测在2013~2025年之间,某市该农产品的销售额在哪一年达到最大.
附:对于一组数据,…,,其回归直线的斜率和截距的最小二乘估计分别为:.
当前题号:9 | 题型:解答题 | 难度:0.99