- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 解释回归直线方程的意义
- + 用回归直线方程对总体进行估计
- 根据回归方程求原数据中的值
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
为了解某地区某种农产品的年产量
(单位:吨)对价格
(单位:千元/吨)和利润
的影响,对近五年该农产品的年产量和价格统计如下表:
已知
和
具有线性相关关系.
(Ⅰ)求
关于
的线性回归方程
;
(Ⅱ)若每吨该农产品的成本为2千元,假设该农产品可全部卖出,预测当年产量为多少吨时,年利润
取到最大值?(保留一位小数)
参考数据及公式:
,
,

,
.



![]() | 1 | 2 | 3 | 4 | 5 |
![]() | 7.0 | 6.5 | 5.5 | 3.8 | 2.2 |
已知


(Ⅰ)求



(Ⅱ)若每吨该农产品的成本为2千元,假设该农产品可全部卖出,预测当年产量为多少吨时,年利润

参考数据及公式:





某个服装店经营某种服装,在某周内获纯利y(元)与该周每天销售这些服装件数x之间有如下一组数据:
已知
=280,
yi=3 487,
(1)求
;
(2)求纯利y与每天销售件数x之间的回归直线方程;
(3)每天多销售1件,纯利y增加多少元?
x | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
y | 66 | 69 | 73 | 81 | 89 | 90 | 91 |
已知


(1)求

(2)求纯利y与每天销售件数x之间的回归直线方程;
(3)每天多销售1件,纯利y增加多少元?
某超市在2017年五一正式开业,开业期间举行开业大酬宾活动,规定:一次购买总额在区间
内者可以参与一次抽奖,根据统计发现参与一次抽奖的顾客每次购买金额分布情况如下:

(1)求参与一次抽奖的顾客购买金额的平均数与中位数(同一组中的数据用该组区间的中点值作代表,结果保留到整数);
(2)若根据超市的经营规律,购买金额
与平均利润
有以下四组数据:

试根据所给数据,建立
关于
的线性回归方程
,并根据(1)中计算的结果估计超市对每位顾客所得的利润.
参考公式:
,
.


(1)求参与一次抽奖的顾客购买金额的平均数与中位数(同一组中的数据用该组区间的中点值作代表,结果保留到整数);
(2)若根据超市的经营规律,购买金额



试根据所给数据,建立



参考公式:


为了解某社区居民的家庭年收入与市支出的关系.随机调查了该社区5户家庭,得到如图统计数据表:

据上表得回归直线方程
,其中
,据此估计该社区一户收入为15万元家庭的年支出为__________万元.

据上表得回归直线方程


千年潮未落,风起再扬帆,为实现“两个一百年”奋斗目标、实现中华民族伟大复兴的中国梦奠定坚实基础,哈三中积极响应国家号召,不断加大拔尖人才的培养力度,据不完全统计:

根据上表可得回归方程
中的
为1.35,我校2018届同学在学科竞赛中获省级一等奖以上学生人数为63人,据此模型预报我校今年被清华、北大等世界名校录取的学生人数为( )

根据上表可得回归方程


A.111 | B.115 | C.117 | D.123 |
某淘宝商城在2017年前7个月的销售额
(单位:万元)的数据如下表,已知
与
具有较好的线性关系.
(1)求
关于
的线性回归方程;
(2)分析该淘宝商城2017年前7个月的销售额的变化情况,并预测该商城8月份的销售额.
附:回归直线的斜率和截距的最小二乘估计公式分别为:
,
.



月份![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
销售额![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
(1)求


(2)分析该淘宝商城2017年前7个月的销售额的变化情况,并预测该商城8月份的销售额.
附:回归直线的斜率和截距的最小二乘估计公式分别为:


某农场农作物使用肥料量x与产量y的统计数据如下表:
根据上表,可得回归方程y=bx+a中的b为9.4,据此模型,预报使用肥料量为6吨时产量为____吨.
肥料最x(吨) | 2 | 3 | 4 | 5 |
产量y(吨) | 26 | 39 | 49 | 54 |
根据上表,可得回归方程y=bx+a中的b为9.4,据此模型,预报使用肥料量为6吨时产量为____吨.