- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 解释回归直线方程的意义
- + 用回归直线方程对总体进行估计
- 根据回归方程求原数据中的值
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:
(1)求回归直线方程
,其中
,
;
(2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本)
单价x(元) | 8 | 8.2 | 8.4 | 8.6 | 8.8 | 9 |
销量y(件) | 90 | 84 | 83 | 80 | 75 | 68 |
单价x(元) | 8 | 8.2 | 8.4 | 8.6 | 8.8 | 9 |
销量y(件) | 90 | 84 | 83 | 80 | 75 | 68 |
(1)求回归直线方程



(2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本)
下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量(
吨)与相应的生产能耗
(吨)标准煤的几组对照数据:
(1)请画出上表数据的散点图;

(2)请根据上表提供的数据,用最小二乘法求出
关于
的线性回归方程
;
(3)已知该厂技术改造前100吨甲产品能耗为200吨标准煤,试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技术改造前降低多少吨标准煤?


![]() | 1 | 2 | 3 | 4 | 5 |
![]() | 2 | 3 | 6 | 9 | 10 |
(1)请画出上表数据的散点图;

(2)请根据上表提供的数据,用最小二乘法求出



(3)已知该厂技术改造前100吨甲产品能耗为200吨标准煤,试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技术改造前降低多少吨标准煤?
某省的一个气象站观测点在连续4天里记录的
指数
与当天的空气水平可见度
(单位:
)的情况如下表:

(1)设
,根据上表的数据, 用最小二乘法求出
关于
的线性回归方程;
(附参考公式:
,其中
,
)
参考数据:
(2)根据求出的回归直线方程预
测当
指数
时,当天空气水平的可见度约是多少?





(1)设



(附参考公式:



参考数据:

(2)根据求出的回归直线方程预



四名同学根据各自的样本数据研究变量
之间的相关关系,并求得回归直线方程,分别得到以下四个结论:( )
①
与
负相关且
. ②
与
负相关且
③
与
正相关且
④
与
正相关且
其中正确的结论的序号是( )

①






③






其中正确的结论的序号是( )
A.①② | B.②③ | C.①④ | D.③④ |
某省的一个气象站观测点在连续4天里记录的
指数
与当天的空气水平可见度
(单位:
)的情况如表1:
,根据表1的数据,求出
关于
的线性回归方程;
(2)小李在该市开了一家洗车店,经统计,洗车店平均每天的收入与
指数有相关关系,如表3:
,其中
,
)




![]() | ![]() | 700 | ![]() | ![]() |
![]() | 0.5 | 3.5 | 6.5 | 9.5 |
该省某市2017年9月指数频数分布如表2:
频数 | 3 | 6 | 12 | 6 | 3 |
(1)设



(2)小李在该市开了一家洗车店,经统计,洗车店平均每天的收入与

![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
日均收入(元) | ![]() | ![]() | ![]() | ![]() | ![]() |
根据表3估计小李的洗车店9月份平均每天的收入.
(附参考公式:


第31届夏季奥林匹克运动会于2016年8月5日至8月21日在巴西里约热内卢举行.如表是近五届奥运会中国代表团和俄罗斯代表团获得的金牌数的统计数据(单位:枚).
(1)根据表格中两组数据在答题卡上完成近五届奥运会两国代表团获得的金牌数的茎叶图,并通过茎叶图比较两国代表团获得的金牌数的平均值及分散程度(不要求计算出具体数值,给出结论即可);
(2)如表是近五届奥运会中国代表团获得的金牌数之和
(从第26届算起,不包括之前已获得的金牌数)随时间
变化的数据:
作出散点图如图:

由图可以看出,金牌数之和
与时间
之间存在线性相关关系,请求出
关于
的线性回归方程,并预测到第32届奥运会时中国代表团获得的金牌数之和为多少?
附:对于一组数据
,
,…,
,其回归直线
的斜率和截距的最小二乘估计分别为:
,
| 第30届伦敦 | 第29届北京 | 第28届雅典 | 第27届悉尼 | 第26届亚特兰大 |
中国 | 38 | 51 | 32 | 28 | 16 |
俄罗斯 | 24 | 23 | 27 | 32 | 26 |
(1)根据表格中两组数据在答题卡上完成近五届奥运会两国代表团获得的金牌数的茎叶图,并通过茎叶图比较两国代表团获得的金牌数的平均值及分散程度(不要求计算出具体数值,给出结论即可);
(2)如表是近五届奥运会中国代表团获得的金牌数之和


时间![]() | 26 | 27 | 28 | 29 | 30 |
金牌数之和![]() | 16 | 44 | 76 | 127 | 165 |
作出散点图如图:

由图可以看出,金牌数之和




附:对于一组数据





关于某实验仪器的使用年限
(年)和所支出的维修费用
(万元)有如图的统计资料:
由表中的数据显示,
与
之间存在线性相关关系.试求:
(1)
对
的线性回归方程
;
(2)估计使用年限为10年时,维修费用是多少?
附:
,
(参考数据:
)


使用年限![]() | 2 | 3 | 4 | 5 | 6 |
维修费用![]() | 2.2 | 3.8 | 5. 5 | 6.5 | 7.0 |
由表中的数据显示,


(1)



(2)估计使用年限为10年时,维修费用是多少?
附:



下列有关线性回归的说法,不正确的是( )
A.变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系叫作相关关系 |
B.在平面直角坐标系中用描点的方法得到表示具有相关关系的两个变量的一组数据的图形叫作散点图 |
C.回归方程最能代表观测值![]() |
D.任何一组观测值都能得到具有代表意义的回归直线 |
随着人们经济收入的不断增长,个人购买家庭轿车已不再是一种时尚.车的使用费用,尤其是随着使用年限的增多,所支出的费用到底会增长多少,一直是购车一族非常关心的问题.某汽车销售公司做了一次抽样调查,并统计得出某款车的使用年限
(单位:年)与所支出的总费用
(单位:万元)有如下的数据资料:
若由资料知
对
呈线性相关关系.
(1)试求线性回归方程
=
+
的回归系数
,
;
(2)当使用年限为
年时,估计车的使用总费用.


使用年限![]() | 2 | 3 | 4 | 5 | 6 |
总费用![]() | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
若由资料知


(1)试求线性回归方程






(2)当使用年限为

有一个同学家开了一个小卖部,他为了研究气温对热饮销售的影响,经过统计,得到一个卖出的热饮杯数与当天气温的对比表:
(1)画出散点图;
(2)从散点图中发现气温与热饮销售杯数之间关系的一般规律;
(3)求回归方程;
(4)如果某天的气温是
,预测这天卖出的热饮杯数.
摄氏温度/![]() | -5 | 0 | 4 | 7 | 12 | 15 | 19 | 23 | 27 | 31 | 36 |
热饮杯数 | 156 | 150 | 132 | 128 | 130 | 116 | 104 | 89 | 93 | 76 | 54 |
(1)画出散点图;
(2)从散点图中发现气温与热饮销售杯数之间关系的一般规律;
(3)求回归方程;
(4)如果某天的气温是
