- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 相关关系
- 散点图
- + 回归直线方程
- 解释回归直线方程的意义
- 用回归直线方程对总体进行估计
- 根据回归方程求原数据中的值
- 最小二乘法
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
为了研究一种昆虫的产卵数
和温度
是否有关,现收集了7组观测数据列于下表中,并做出了散点图,

发现样本点并没有分布在某个带状区域内,两个变量并不呈现线性相关关系,现分别用模型①
与模型;②
作为产卵数
和温度
的回归方程来建立两个变量之间的关系.
其中
,
,
,
,
附:对于一组数据
,
,……
,其回归直线
的斜率和截距的最小二乘估计分别为:
,
(1)根据表中数据,分别建立两个模型下
关于
的回归方程;并在两个模型下分别估计温度为
时的产卵数.(
与估计值均精确到小数点后两位)(参考数据:
)
(2)若模型①、②的相关指数计算分别为
,请根据相关指数判断哪个模型的拟合效果更好.



发现样本点并没有分布在某个带状区域内,两个变量并不呈现线性相关关系,现分别用模型①




温度 | 20 | 22 | 24 | 26 | 28 | 30 | 32 |
产卵数 | 6 | 10 | 21 | 24 | 64 | 113 | 322 |
400 | 484 | 576 | 676 | 784 | 900 | 1024 | |
1.79 | 2.30 | 3.04 | 3.18 | 4.16 | 4.73 | 5.77 |
![]() | ![]() | ![]() | ![]() |
26 | 692 | 80 | 3.57 |
![]() | ![]() | ![]() | ![]() |
1157.54 | 0.43 | 0.32 | 0.00012 |
其中




附:对于一组数据






(1)根据表中数据,分别建立两个模型下





(2)若模型①、②的相关指数计算分别为

在一次耐力和体能测试之后,某校对其甲、乙、丙、丁四位学生的耐力成绩(
)和体能成绩(
)进行回归分析,求得回归直线方程为
.由于某种原因,成绩表(如下表所示)中缺失了乙的耐力和体能成绩.
(Ⅰ)请设法还原乙的耐力成绩
和体能成绩
;
(Ⅱ)在区域性校际学生身体综合素质比赛中,由甲、乙、丙、丁四位学生组成学校代表队参赛.共举行3场比赛,每场比赛均由赛事主办方从学校代表中随机抽两人参赛,每场比赛所抽的选手中,只要有一名选手的综合素质分高于16分,就能为所在学校赢得一枚荣誉奖章.若记比赛中赢得荣誉奖章的枚数为
,试根据上表所提供数据,预测该校所获奖章数
的分布列与数学期望.



| 甲 | 乙 | 丙 | 丁 |
耐力成绩(X) | 7.5 | m | 8 | 8.5 |
体能成绩(Y) | 8 | n | 8.5 | 9.5 |
综合素质 ( | 15.5 | 16 | 16.5 | 18 |
(Ⅰ)请设法还原乙的耐力成绩


(Ⅱ)在区域性校际学生身体综合素质比赛中,由甲、乙、丙、丁四位学生组成学校代表队参赛.共举行3场比赛,每场比赛均由赛事主办方从学校代表中随机抽两人参赛,每场比赛所抽的选手中,只要有一名选手的综合素质分高于16分,就能为所在学校赢得一枚荣誉奖章.若记比赛中赢得荣誉奖章的枚数为


网络购物已经成为一种时尚,电商们为了提升知名度,加大了在媒体上的广告投入.经统计,近五年某电商在媒体上的广告投入费用x(亿元)与当年度该电商的销售收入y(亿元)的数据如下表:):
(1)求y关于x的回归方程; (2)2017年度该电商准备投入广告费1.5亿元,
利用(1)中的回归方程,预测该电商2017年的销售收入.
附:回归直线的斜率和截距的最小二乘估计公式分别为:
,选用数据:
,
年份 | 2012年 | 2013年 | 2014 | 2015 | 2016 |
广告投入x | 0.8 | 0.9 | 1 | 1.1 | 1.2 |
销售收入y | 16 | 23 | 25 | 26 | 30 |
(1)求y关于x的回归方程; (2)2017年度该电商准备投入广告费1.5亿元,
利用(1)中的回归方程,预测该电商2017年的销售收入.
附:回归直线的斜率和截距的最小二乘估计公式分别为:




如图表所示,生产甲产品过程中记录的产量
(吨)与相应的生产能耗
(吨标准煤)之间的几组对应数据,根据表中提供的数据,求出
关于
的线性回归方程
,那么表中
的值为________.







某奶茶店的日销售收入y(单位:百元)与当天平均气温x(单位:℃)之间的关系如下:
通过上面的五组数据得到了x与y之间的线性回归方程为
,但现在丢失了一个数据,该数据应为
x | -2 | -1 | 0 | 1 | 2 |
y | 5 | | 2 | 2 | 1 |
通过上面的五组数据得到了x与y之间的线性回归方程为

A.2 |
B.3 |
C.4 |
D.5 |
下列说法:
①分类变量A与B的随机变量
越大,说明“A与B有关系”的可信度越大.
②以模型
去拟合一组数据时,为了求出回归方程,设
,将其变换后得到线
性方程
,则
的值分别是
和0.3.
③根据具有线性相关关系的两个变量的统计数据所得的回归直线方程为
中,
,
,
,则
.正确的个数是 ( )
①分类变量A与B的随机变量

②以模型


性方程



③根据具有线性相关关系的两个变量的统计数据所得的回归直线方程为





A.0 | B.1 | C.2 | D.3 |
某产品的广告费用x与销售额y的统计数据如下表:
根据上表中的数据可以求得线性回归方程
中的
为6.6,据此模型预报广告费用为
10万元时销售额为( ).
广告费用x(万元) | 1 | 2 | 4 | 5 |
销售额y(万元) | 6 | 14 | 28 | 32 |
根据上表中的数据可以求得线性回归方程


10万元时销售额为( ).
A.66.8万元 | B.66.4万元 | C.66.2万元 | D.66.0万元 |