- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 相关关系
- 散点图
- + 回归直线方程
- 解释回归直线方程的意义
- 用回归直线方程对总体进行估计
- 根据回归方程求原数据中的值
- 最小二乘法
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
下列说法:
①将一组数据中的每个数据都加上或减去同一个常数后,均值与方差都不变;
②设有一个回归方程
,变量x增加一个单位时,y平均增加3个单位;
③线性回归方程
必经过点
;
④在吸烟与患肺病这两个分类变量的计算中,从独立性检验知,有99%的把握认为吸烟与患肺病有关系时,我们说现有100人吸烟,那么其中有99人患肺病.其中错误的个数是( )
①将一组数据中的每个数据都加上或减去同一个常数后,均值与方差都不变;
②设有一个回归方程

③线性回归方程


④在吸烟与患肺病这两个分类变量的计算中,从独立性检验知,有99%的把握认为吸烟与患肺病有关系时,我们说现有100人吸烟,那么其中有99人患肺病.其中错误的个数是( )
A.0 |
B.1 |
C.2 |
D.3 |
下列说法正确的是 ( )
A.已知购买一张彩票中奖的概率为![]() ![]() |
B.互斥事件一定是对立事件; |
C.如图,直线![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
D.若样本![]() ![]() ![]() ![]() |
“奶茶妹妹”对某时间段的奶茶销售量及其价格进行调查,统计出售价
元和销售量
杯之间的一组数据如下表所示:
通过分析,发现销售量
对奶茶的价格
具有线性相关关系.
(Ⅰ)求销售量
对奶茶的价格
的回归直线方程;
(Ⅱ)欲使销售量为
杯,则价格应定为多少?
附:线性回归方程为
,其中
,


价格![]() | 5 | 5.5 | 6.5 | 7 |
销售量![]() | 12 | 10 | 6 | 4 |
通过分析,发现销售量


(Ⅰ)求销售量


(Ⅱ)欲使销售量为

附:线性回归方程为



已知变量x,y具有线性相关关系,测得(x,y)的一组数据如下:(0,1),(1,2),(2,4),(3,5),其回归方程为
,则
的值是


A.1 | B.0.9 | C.0.8 | D.0.7 |
一个车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次试验,收集数据如下:
由表中数据,求得线性回归方程为
=0.65x+
,根据回归方程,预测加工70个零件所花费的时间为________分钟.
零件数x(个) | 10 | 20 | 30 | 40 | 50 |
加工时间y(分钟) | 64 | 69 | 75 | 82 | 90 |
由表中数据,求得线性回归方程为


A.101 | B.102 | C.103 | D.104 |
某车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次试验.根据收集到的数据(如下表),由最小二乘法求得回归直线方程

表中有一个数据模糊不清,请你推断出该数据的值为______ .


表中有一个数据模糊不清,请你推断出该数据的值为______ .
下列说法:
①从匀速传递的产品生产流水线上,质检员第10分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样
②某地气象局预报:5月9日本地降水概率为90%,结果这天没下雨,这表明天气预报并不科学
③在回归分析模型中,残差平方和越小,说明模型的拟合效果越好
④在回归直线方程
中,当解释变量x每增加一个单位时,预报变量平均增加0.1个单位
其中正确的是 (填上你认为正确的序号)
①从匀速传递的产品生产流水线上,质检员第10分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样
②某地气象局预报:5月9日本地降水概率为90%,结果这天没下雨,这表明天气预报并不科学
③在回归分析模型中,残差平方和越小,说明模型的拟合效果越好
④在回归直线方程

其中正确的是 (填上你认为正确的序号)