- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 计算几个数的平均数
- 根据平均数求参数
- 平均数的和差倍分性质
- + 由频率分布直方图估计平均数
- 由茎叶图计算平均数
- 用平均数的代表意义解决实际问题
- 众数、平均数、中位数的比较
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
为了检测某种零件的一条生产线的生产过程,从生产线上随机抽取一批零件,根据其尺寸的数据分成
,
,
,
,
,
,
组,得到如图所示的频率分布直方图.若尺寸落在区间
之外,则认为该零件属“不合格”的零件,其中
,
分别为样本平均和样本标准差,计算可得
(同一组中的数据用该组区间的中点值作代表).

(1)若一个零件的尺寸是
,试判断该零件是否属于“不合格”的零件;
(2)工厂利用分层抽样的方法从样本的前
组中抽出
个零件,标上记号,并从这
个零件中再抽取
个,求再次抽取的
个零件中恰有
个尺寸小于
的概率.












(1)若一个零件的尺寸是

(2)工厂利用分层抽样的方法从样本的前







某校从参加高二年级学业水平测试的学生中抽出80名学生,其数学成绩(均为整数)的频率分布直方图如图,估计这次测试中数学成绩的平均分、众数、中位数分别是( )


A.73.3,75,72 | B.72,75,73.3 |
C.75,72,73.3 | D.75,73.3,72 |
某校从高一年级的一次月考成绩中随机抽取了
名学生的成绩(满分
分),这
名学生的成绩都在
内,按成绩分为
,
,
,
,
五组,得到如图所示的频率分布直方图.
(1)求图中的
值;
(2)假设同组中的每个数据都用该组区间的中点值代替,估计该校高一年级本次考试成绩的平均分;
(3)用分层抽样的方法从成绩在
内的学生中抽取
人,再从这
人中随机抽取
名学生进行调查,求月考成绩在
内至少有
名学生被抽到的概率.









(1)求图中的

(2)假设同组中的每个数据都用该组区间的中点值代替,估计该校高一年级本次考试成绩的平均分;
(3)用分层抽样的方法从成绩在







如图所示是一样本的频率分布直方图,则由图形中的数据,可以估计众数与中位数分别是( )


A.12.5;12.5 | B.13;13 | C.13;12.5 | D.12.5;13 |
我市为增强市民的环境保护意识,面向全市征召义务宣传志愿者.现从符合条件的志愿者中随机抽取100名按年龄(单位:岁)分组:第1组
,第2组
,第3组
,第4组
,第5组
,得到的频率分布直方图如图所示.

(1)若从第3,4,5组中用分层抽样的方法抽取6名志愿者参加广场的宣传活动,应从第3,4,5组各抽取多少名志愿者?
(2)请根据频率分布直方图,估计这100名志愿者样本的平均数;
(3)在(1)的条件下,该市决定在这6名志愿者中随机抽取2名志愿者介绍宣传经验,求第4组至少有一名志愿者被抽中的概率.(参考数据:
)






(1)若从第3,4,5组中用分层抽样的方法抽取6名志愿者参加广场的宣传活动,应从第3,4,5组各抽取多少名志愿者?
(2)请根据频率分布直方图,估计这100名志愿者样本的平均数;
(3)在(1)的条件下,该市决定在这6名志愿者中随机抽取2名志愿者介绍宣传经验,求第4组至少有一名志愿者被抽中的概率.(参考数据:


根据幼儿身心发展的特征,幼儿园通常着重在健康、科学、社会、语言、艺术五大领域对幼儿展开全方位的教育和培养.经调查发现,一个幼儿除了在幼儿园进行五大领域的系统学习之外,还会报一些课外兴趣班.而家长朋友们对于是否额外报这些课外兴趣班的态度也是不一样的.某调查机构对某幼儿园的100名幼儿家长就孩子是否报课外兴趣班的赞同程度进行调查统计,得到家长对幼儿报课外兴趣班赞同度
的频数分布表:
(1)分别计算对幼儿报兴趣班的赞同度不低于
的家长比例和对幼儿报兴趣班的赞同度低于
的家长比例;
(2)求家长对幼儿报兴趣班的赞同度的平均数与方差的估计值.(同一组中的数据用该组区间的中点值代替)

赞同度![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
家长数 | 2 | 12 | 14 | 28 | 44 |
(1)分别计算对幼儿报兴趣班的赞同度不低于


(2)求家长对幼儿报兴趣班的赞同度的平均数与方差的估计值.(同一组中的数据用该组区间的中点值代替)
某企业生产的某种产品被检测出其中一项质量指标存在问题.该企业为了检查生产该产品的甲、乙两条流水线的生产情况,随机地从这两条流水线上生产的大量产品中各抽取50件产品作为样本,测出它们的这一项质量指标值.若该项质量指标值落在(195,210]内,则为合格品,否则为不合格品.表1是甲流水线样本的频数分布表,图1是乙流水线样本的频率分布直方图
图1:乙流水线样本频率分布直方图

表1:甲流水线样本频数分布表
(1)根据图1,估计乙流水线生产产品该质量指标值的中位数和平均数(估算平均数时,同一组中的数据用该组区间的中点值为代表);
(2)若将频率视为概率,某个月内甲、乙两条流水线均生产了5000件产品,则甲,乙两条流水线分别生产出的不合格品约多少件?
图1:乙流水线样本频率分布直方图

表1:甲流水线样本频数分布表
质量指标值 | 频数 |
(190,195] | 9 |
(195,200] | 10 |
(200,205] | 17 |
(205,210] | 8 |
(210,215] | 6 |
(1)根据图1,估计乙流水线生产产品该质量指标值的中位数和平均数(估算平均数时,同一组中的数据用该组区间的中点值为代表);
(2)若将频率视为概率,某个月内甲、乙两条流水线均生产了5000件产品,则甲,乙两条流水线分别生产出的不合格品约多少件?
为了检测某种零件的一条生产线的生产过程,从生产线上随机抽取一批零件,根据其尺寸的数据得到如图所示的频率分布直方图,若尺寸落在区间
之外,则认为该零件属“不合格”的零件,其中
,s分别为样本平均数和样本标准差,计算可得
(同一组中的数据用该组区间的中点值作代表).

(1)求样本平均数的大小;
(2)若一个零件的尺寸是100 cm,试判断该零件是否属于“不合格”的零件.




(1)求样本平均数的大小;
(2)若一个零件的尺寸是100 cm,试判断该零件是否属于“不合格”的零件.
为庆祝国庆节,某中学团委组织了“歌颂祖国,爱我中华”知识竞赛,从参加考试的学生中抽出60名,将其成绩(成绩均为整数)分成[40,50),[50,60),…,[90,100)六组,并画出如图所示的部分频率分布直方图,观察图形,回答下列问题:

(1)求第四组的频率,并补全这个频率分布直方图;
(2)估计这次考试的及格率(60分及以上为及格)和平均分.

(1)求第四组的频率,并补全这个频率分布直方图;
(2)估计这次考试的及格率(60分及以上为及格)和平均分.
华为手机作为华为公司三大核心业务之一,2018年的销售量跃居全球第二名,某机构随机选取了100名华为手机的顾客进行调查,并将这
人的手机价格按照
,
,…
分成
组,制成如图所示的频率分布直方图,其中
是
的
倍.

(1)求
,
的值;
(2)求这
名顾客手机价格的平均数(同一组中的数据用该组区间的中间值作代表);
(3)利用分层抽样的方式从手机价格在
和
的顾客中选取
人,并从这
人中随机抽取
人进行回访,求抽取的
人手机价格在不同区间的概率.









(1)求


(2)求这

(3)利用分层抽样的方式从手机价格在





