- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 计算几个数的平均数
- 根据平均数求参数
- 平均数的和差倍分性质
- + 由频率分布直方图估计平均数
- 由茎叶图计算平均数
- 用平均数的代表意义解决实际问题
- 众数、平均数、中位数的比较
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某校在2013年的自主招生考试成绩中随机抽取40名学生的笔试成绩,按成绩共分成五组:第1组[75,80),第2组[80,85),第3组[85,90),第4组[90,95),第5组[95,100],得到的频率分布直方图如图所示,同时规定成绩在85分以上的学生为“优秀”,成绩小于85分的学生为“良好”,且只有成绩为“优秀”的学生才能获得面试资格.

(1)求出第4组的频率,并补全频率分布直方图;
(2)根据样本频率分布直方图估计样本的中位数与平均数;
(3)如果用分层抽样的方法从“优秀”和“良好”的学生中共选出5人,再从这5人中选2人,那么至少有一人是“优秀”的概率是多少?

(1)求出第4组的频率,并补全频率分布直方图;
(2)根据样本频率分布直方图估计样本的中位数与平均数;
(3)如果用分层抽样的方法从“优秀”和“良好”的学生中共选出5人,再从这5人中选2人,那么至少有一人是“优秀”的概率是多少?
为了普及环保知识,增强环保意识,某大学随机抽取30名学生参加环保知识测试,得分(10分制)的频数分布统计图如图所示,如果得分值的中位数为
,众数为
,平均数为
,则
、
、
中的最大者是____________.







2019年中秋节期间,某超市为了解月饼的销售量,对其所在销售范围内的1000名消费者在中秋节期间的月饼购买量(单位:g)进行了问卷调查,得到如下频率分布直方图:

(1)求频率分布直方图中a的值;
(2)估计该超市销售范围内消费者人均在中秋节期间的月饼购买量(同一组中的数据以这组数据所在区间的中点的值作代表).

(1)求频率分布直方图中a的值;
(2)估计该超市销售范围内消费者人均在中秋节期间的月饼购买量(同一组中的数据以这组数据所在区间的中点的值作代表).
高二级部期中考试前组织了一次模拟,并随机抽取了部分高二学生的数学检测成绩绘制成如图所示的频率分布直方图.根据频率分布直方图,估计该次检测的平均成绩μ=_____.

为庆祝党的98岁生日,某高校组织了“歌颂祖国,紧跟党走”为主题的党史知识竞赛.从参加竞赛的学生中,随机抽取40名学生,将其成绩分为六段
,
,
,
,
,
,到如图所示的频率分布直方图.

(1)求图中
的值及样本的中位数与众数;
(2)若从竞赛成绩在
与
两个分数段的学生中随机选取两名学生,设这两名学生的竞赛成绩之差的绝对值不大于
分为事件
,求事件
发生的概率.
(3)为了激励同学们的学习热情,现评出一二三等奖,得分在
内的为一等奖,得分在
内的为二等奖, 得分在
内的为三等奖.若将频率视为概率,现从考生中随机抽取三名,设
为获得三等奖的人数,求
的分布列与数学期望.







(1)求图中

(2)若从竞赛成绩在





(3)为了激励同学们的学习热情,现评出一二三等奖,得分在





某书店为了了解销售单价(单位:元)在
内的图书销售情况,从2018年上半年已经销售的图书中随机抽取100本,获得的所有样本数据按照
,
,
,
,
,
分成6组,制成如图所示的频率分布直方图,已知样本中销售单价在
内的图书数是销售单价在
内的图书数的2倍.

(1)求出x与y,再根据频率分布直方图佔计这100本图书销售单价的平均数、中位数(同一组中的数据用该组区间的中点值作代表);
(2)用分层抽样的方法从销售单价在
内的图书中共抽取40本,求单价在6组样本数据中的图书销售的数量;
(3)从(2)中抽取且价格低于12元的书中任取2本,求这2本书价格都不低于10元的概率.










(1)求出x与y,再根据频率分布直方图佔计这100本图书销售单价的平均数、中位数(同一组中的数据用该组区间的中点值作代表);
(2)用分层抽样的方法从销售单价在

(3)从(2)中抽取且价格低于12元的书中任取2本,求这2本书价格都不低于10元的概率.
从一批产品中随机抽取
件测量其内径,将测得数据进行统计整理后得到如下图所示的频率分布直方图.

(Ⅰ)求这
件产品中,内径在
内的产品数量;
(Ⅱ)试估计这批产品内径的中位数;
(Ⅲ)直接比较这批产品内径的平均数
与
(单位毫米)的大小关系,不必说明理由.


(Ⅰ)求这


(Ⅱ)试估计这批产品内径的中位数;
(Ⅲ)直接比较这批产品内径的平均数


某高校在2019年的自主招生笔试成绩(满分200分)中,随机抽取100名考生的成绩,按此成绩分成五组,得到如下的频率分布表:
(1)求频率分布表中
,
,
的值;
(2)估计笔试成绩的平均数及中位数(同一组中的数据用该组区间的中点值作代表);(精确到0.1)
(3)若从第四组、第五组的学生中按组用分层抽样的方法抽取6名学生参加面试,用简单随机抽样方法从6人中抽取2人作为正、副小组长,求“抽取的2人为同一组”的概率.
组号 | 分组 | 频数 | 频率 |
第一组 | ![]() | 15 | ![]() |
第二组 | ![]() | 25 | 0.25 |
第三组 | ![]() | 30 | 0.3 |
第四组 | ![]() | ![]() | ![]() |
第五组 | ![]() | 10 | 0.1 |
(1)求频率分布表中



(2)估计笔试成绩的平均数及中位数(同一组中的数据用该组区间的中点值作代表);(精确到0.1)
(3)若从第四组、第五组的学生中按组用分层抽样的方法抽取6名学生参加面试,用简单随机抽样方法从6人中抽取2人作为正、副小组长,求“抽取的2人为同一组”的概率.
某健康社团为调查居民的运动情况,统计了某小区100名居民平均每天的运动时长(单位:小时)并根据统计数据分为
六个小组(所调查的居民平均每天运动时长均在
内),得到的频率分布直方图如图所示.

(1)求出图中
的值,并估计这
名居民平均每天运动时长的平均值及中位数(同一组中的每个数据可用该组区间的中点值代替);
(2)为了分析出该小区居民平均每天的运动量与职业、年龄等的关系,该社团按小组用分层抽样的方法抽出20名居民进一步调查,试问在
时间段内应抽出多少人?



(1)求出图中


(2)为了分析出该小区居民平均每天的运动量与职业、年龄等的关系,该社团按小组用分层抽样的方法抽出20名居民进一步调查,试问在

为了了解居民的家庭收入情况,某社区组织工作人员从该社区的居民中随机抽取了
户家庭进行问卷调查,经调查发现,这些家庭的月收人在
元到
元之间,根据统计数据作出:
(1)经统计发现,该社区居民的家庭月收人
(单位:百元)近似地服从正态分布
,其中
近似为样本平均数.若
落在区间
的左侧,则可认为该家庭属“收入较低家庭" ,社区将联系该家庭,咨询收入过低的原因,并采取相应措施为该家庭提供创收途径.若该社区
家庭月收入为
元,试判断
家庭是否属于“收人较低家庭”,并说明原因;
(2)将样本的频率视为总体的概率
①从该社区所有家庭中随机抽取
户家庭,若这
户家庭月收人均低于
元的概率不小于
,求
的最大值;
②在①的条件下,某生活超市赞助了该社区的这次调查活动,并为这次参与调在的家庭制定了贈送购物卡的活动,贈送方式为:家庭月收入低于
的获赠两次随机购物卡,家庭月收入不低于
的获赠一次随机购物卡;每次赠送的购物卡金额及对应的概率分别为:
则
家庭预期获得的购物卡金额为多少元?(结果保留整数)



(1)经统计发现,该社区居民的家庭月收人








(2)将样本的频率视为总体的概率
①从该社区所有家庭中随机抽取





②在①的条件下,某生活超市赞助了该社区的这次调查活动,并为这次参与调在的家庭制定了贈送购物卡的活动,贈送方式为:家庭月收入低于


赠送购物卡金额(单位:元) | ![]() | ![]() | ![]() |
概率 | ![]() | ![]() | ![]() |
则

