- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 计算几个数的平均数
- 根据平均数求参数
- 平均数的和差倍分性质
- + 由频率分布直方图估计平均数
- 由茎叶图计算平均数
- 用平均数的代表意义解决实际问题
- 众数、平均数、中位数的比较
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某市随机抽取部分企业调查年上缴税收情况,将所得数据绘制成如图的频率分布直方图.

(Ⅰ)根据频率分布直方图,估计该市企业年上缴税收的平均值;
(Ⅱ)以直方图中的频率作为概率,从该市企业中任选4个,这4个企业年上缴税收位于
(单位:万元)的个数记为X,求X的分布列和数学期望.

(Ⅰ)根据频率分布直方图,估计该市企业年上缴税收的平均值;
(Ⅱ)以直方图中的频率作为概率,从该市企业中任选4个,这4个企业年上缴税收位于

世界军人运动会,简称“军运会”,每四年举办一届,会期7到10天,比赛设有27个大项,参赛规模约100多个国家近10000余人,规模仅次于奥运会,根据各方达成共识,军运会于2019年10月18日至27日在湖北武汉举行,赛期10天,为了军运会顺利召开,特招聘了3万名志愿者.某部门为了了解志愿者的基本情况,调查了其中100名志愿者的年龄,得到了他们年龄的中位数为34岁,年龄在
岁内的人数为15人,并根据调查结果画出如图所示的频率分布直方图:

(1)求
,
的值并估算出志愿者的平均年龄(同一组的数据用该组区间的中点值代表);
(2)这次军运会志愿者主要通过直接到武汉军运会执委会志愿者部现场报名和登录第七届世界军运会官网报名,即现场和网络两种方式报名调查.这100位志愿者的报名方式部分数据如下表所示,完善下面的表格,通过计算说明能否在犯错误的概率不超过0.001的前提下,认为“选择哪种报名方式与性别有关系”?
参考公式及数据:
,其中
.


(1)求


(2)这次军运会志愿者主要通过直接到武汉军运会执委会志愿者部现场报名和登录第七届世界军运会官网报名,即现场和网络两种方式报名调查.这100位志愿者的报名方式部分数据如下表所示,完善下面的表格,通过计算说明能否在犯错误的概率不超过0.001的前提下,认为“选择哪种报名方式与性别有关系”?
| 男性 | 女性 | 总计 |
现场报名 | | | 50 |
网络报名 | 31 | | |
总计 | | 50 | |
参考公式及数据:


![]() | 0.05 | 0.01 | 0.005 | 0.001 |
![]() | 3.841 | 6.635 | 7.879 | 10.828 |
为了了解四川省各景点在大众中的熟知度,随机对
岁的人群抽样了
人,回答问题“四川省有哪几个著名的旅游景点?”统计结果如表.

(1)分别求出
的值;
(2)从第
,
,
组回答正确的人中用分层抽样的方法抽取
人,求第
,
,
组每组各抽取多少人?
(3)通过直方图求出年龄的众数,平均数.



组号 | 分组 | 回答正确的人数 | 回答正确的人数 占本组的频率 |
第![]() | ![]() | ![]() | ![]() |
第![]() | ![]() | ![]() | ![]() |
第![]() | ![]() | ![]() | ![]() |
第![]() | ![]() | ![]() | ![]() |
第![]() | ![]() | ![]() | ![]() |
(1)分别求出

(2)从第







(3)通过直方图求出年龄的众数,平均数.
某制造商3月生产了一批乒乓球,从中随机抽样100个进行检查,测得每个球的直径(单位:mm),将数据分组如下:

(Ⅰ)请在上表中补充完成频率分布表(结果保留两位小数),并在图中画出频率分布直方图;
(Ⅱ)若以上述频率作为概率,已知标准乒乓球的直径为40.00 mm,试求这批球的直径误差不超过0.03 mm的概率;
(Ⅲ)统计方法中,同一组数据经常用该组区间的中点值(例如区间[39.99,40.01)的中点值是40.00作为代表.据此估计这批乒乓球直径的平均值(结果保留两位小数).
分组 | 频数 | 频率 |
[39.95,39.97) | 10 | |
[39. 97,39.99) | 20 | |
[39.99,40.01) | 50 | |
[40.01,40.03] | 20 | |
合计 | 100 | |

(Ⅰ)请在上表中补充完成频率分布表(结果保留两位小数),并在图中画出频率分布直方图;
(Ⅱ)若以上述频率作为概率,已知标准乒乓球的直径为40.00 mm,试求这批球的直径误差不超过0.03 mm的概率;
(Ⅲ)统计方法中,同一组数据经常用该组区间的中点值(例如区间[39.99,40.01)的中点值是40.00作为代表.据此估计这批乒乓球直径的平均值(结果保留两位小数).
第
届冬奥会将于
年在中国北京和张家口举行,为宣传冬奥会,让更多的人了解、喜爱冰雪项目,某大学举办了冬奥会知识竞赛,并从中随机抽取了
名学生的成绩,绘制成如图所示的频率分布直方图.

(Ⅰ)试根据频率分布直方图估计这
名学生的平均成绩(同一组数据用该组区间的中点值代替);
(Ⅱ)若采用分层抽样的方法从
、
这两个分数段中抽取
人,求从这两个分数段中应分别抽取多少人?
(Ⅲ)从(Ⅱ)中抽取的
人中随机抽取
人到某社区开展冬奥会宜传活动,求抽取的
人成绩均在
中的概率.




(Ⅰ)试根据频率分布直方图估计这

(Ⅱ)若采用分层抽样的方法从



(Ⅲ)从(Ⅱ)中抽取的




我国已进入新时代中国特色社会主义时期,人民生活水平不断提高,某市随机统计了城区若干户市民十月人均生活支出比九月人均生活支出增加量(记为
元)的情况,并根据统计数据制成如下频率分布直方图.

(1)根据频率分布直方图估算
的平均值
;
(2)视样本中的频率为概率,现从该市所有住户中随机抽取
次,每次抽取
户,每次抽取相互独立,设
为抽出
户中
值不低于
元的户数,求
的分布列和期望
.


(1)根据频率分布直方图估算


(2)视样本中的频率为概率,现从该市所有住户中随机抽取








某家庭记录了未使用节水龙头
天的日用水量数据(单位:
)和使用了节水龙头
天的日用水量数据,得到频数分布表如下:
未使用节水龙头
天的日用水量频数分布表
使用了节水龙头
天的日用水量频数分布表
(Ⅰ)作出使用了节水龙头
天的日用水量数据的频率分布直方图;
(Ⅱ)估计该家庭使用节水龙头后,一年能节省多少水?(一年按
天计算,同一组中的数据以这组数据所在区间中点的值作代表)



未使用节水龙头

日用水量 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
频数 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
使用了节水龙头

日用水量 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
频数 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
(Ⅰ)作出使用了节水龙头

(Ⅱ)估计该家庭使用节水龙头后,一年能节省多少水?(一年按

为了普及环保知识,增强环保意识,某大学随机抽取30名学生参加环保知识测试,得分(十分制)如图所示,假设得分值的中位数为
,众数为
,平均值为
,则()





A.![]() ![]() ![]() | B.![]() ![]() ![]() |
C.![]() ![]() ![]() | D.![]() ![]() ![]() |
从某企业生产的某种产品中随机抽取100件,测量这些产品的某项质量指标,由测量结果得到如下频数分布表:

在图中作出这些数据的频率分布直方图;
估计这种产品质量指标值的平均数、中位数
保留2位小数
;
根据以上抽样调査数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的
”的规定?
质量指标值分组 | ![]() | ![]() | ![]() | ![]() | ![]() |
频数 | 6 | 26 | 38 | 22 | 8 |







双十一购物狂欢节,源于淘宝商城(天猫)
年
月
日举办的网络促销活动,目前已成为中国电子商务行业的年度盛事,某商家为了解“双十一”这一天网购者在其网店一次性购物情况,从这一天交易成功的所有订单里随机抽取了
份,按购物金额(单位:元)进行统计,得到如下频率分布直方图(同一组中的数据用该组区间的中点值做代表计算).

(1)求
的值;
(2)试估计购物金额的平均数;
(3)若该商家制订了两种不同的促销方案:
方案一:全场商品打八折;
方案二:全场商品优惠如下表:
如果你是购物者,你认为哪种方案优惠力度更大?





(1)求

(2)试估计购物金额的平均数;
(3)若该商家制订了两种不同的促销方案:
方案一:全场商品打八折;
方案二:全场商品优惠如下表:
购物金额范围 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
商家优惠(元) | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
如果你是购物者,你认为哪种方案优惠力度更大?