- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 条形统计图
- 折线统计图
- 扇形统计图
- 频率分布表
- 频率分布直方图
- 频率分布折线图
- 茎叶图
- 众数
- 中位数
- + 平均数
- 计算几个数的平均数
- 根据平均数求参数
- 平均数的和差倍分性质
- 由频率分布直方图估计平均数
- 由茎叶图计算平均数
- 用平均数的代表意义解决实际问题
- 众数、平均数、中位数的比较
- 极差、方差、标准差
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某地十万余考生的成绩中,随机地抽取了一批考生的成绩,将其分成6组:第一组
,第二组
,第六组
,作出频率分布直方图,如图所示:

(1)用每组区间的中点值代表该组的数据,估算这批考生的平均成绩;
(2)现从及格(60分及以上)的学生中,用分层抽样的方法抽取了70名学生(其中女生有34名),已知成绩“优异”(超过90分)的女生有1名,能否有95%的把握认为数学成绩优异与性别有关?




(1)用每组区间的中点值代表该组的数据,估算这批考生的平均成绩;
(2)现从及格(60分及以上)的学生中,用分层抽样的方法抽取了70名学生(其中女生有34名),已知成绩“优异”(超过90分)的女生有1名,能否有95%的把握认为数学成绩优异与性别有关?
某地十万余考生的成绩近似地服从正态分布,从中随机地抽取了一批考生的成绩,将其分成6组:第一组
,第二组
,第六组
,作出频率分布直方图,如图所示:

(1)用每组区间的中点值代表该组的数据,估算这批考生的平均成绩和标准差(精确到个位);
(2)以这批考生成绩的平均值和标准差作为正态分布的均值和标准差,设成绩超过93分的为“优”,现在从总体中随机抽取50名考生,记其中“优”的人数为
,是估算
的数学期望.




(1)用每组区间的中点值代表该组的数据,估算这批考生的平均成绩和标准差(精确到个位);
(2)以这批考生成绩的平均值和标准差作为正态分布的均值和标准差,设成绩超过93分的为“优”,现在从总体中随机抽取50名考生,记其中“优”的人数为


为增进市民的环保意识,某市有关部门面向全体市民进行了一次环保知识的微信问卷测试活动,每位市民仅有一次参与问卷测试机会.通过抽样,得到参与问卷测试的1000人的得分数据,制成频率分布直方图如图所示.

(1)估计成绩得分落在[86,100]中的概率.
(2)设这1000人得分的样本平均值为
.
(i)求
(同一组数据用该区间的中点值作代表);
(ii)有关部门为参与此次活动的市民赠送20元或10元的随机话费,每次获赠20元或10元的随机话费的概率分别为
和
.得分不低于
的可获赠2次随机话费,得分低于
的可获赠1次随机话费.求一位市民参与这次活动获赠话费
的平均估计值.

(1)估计成绩得分落在[86,100]中的概率.
(2)设这1000人得分的样本平均值为

(i)求

(ii)有关部门为参与此次活动的市民赠送20元或10元的随机话费,每次获赠20元或10元的随机话费的概率分别为





某保险公司有一款保险产品的历史收益率(收益率=利润÷保费收入)的频率分布直方图如图所示:

(1)试估计平均收益率;
(2)根据经验,若每份保单的保费在20元的基础上每增加
元,对应的销量
(万份)与
(元)有较强线性相关关系,从历史销售记录中抽样得到如下
与
的对应数据:

据此计算出的回归方程为
.
(i)求参数
的估计值;
(ii)若把回归方程
当作
与
的线性关系,用(1)中求出的平均收益率估计此产品的收益率,每份保单的保费定为多少元时此产品可获得最大收益,并求出该最大收益.

(1)试估计平均收益率;
(2)根据经验,若每份保单的保费在20元的基础上每增加






据此计算出的回归方程为

(i)求参数

(ii)若把回归方程



大双和小双两兄弟同时参加驾考,在进行科目一考试前,两兄弟在网上同时进行了5次模拟测试,他们每一次的成绩统计如下表:

分别表示大双和小双两兄弟模拟测试成绩的平均数,
分别表示大双和小双两兄弟模拟测试成绩的方差,则有( )



A.![]() | B.![]() | C.![]() | D.![]() |
下面茎叶图记录了在某项体育比赛中,九位裁判为一名选手打出的分数情况,则去掉一个最高分和一个最低分后,所剩数据的平均值为_________,方差为________.

某班级体育课举行了一次“投篮比赛”活动,为了了解本次投篮比赛学生总体情况,从中抽取了甲乙两个小组样本分数的茎叶图如图所示.
(1)分别求甲乙两个小组成绩的平均数与方差;
(2)分析比较甲乙两个小组的成绩;
(3)从甲组高于70分的同学中,任意抽取2名同学,求恰好有一名同学的得分在[80,90)的概率.
| | | | | | | | | |
5 | 6 | | | | 5 | 8 | | | |
6 | 0 | 1 | 3 | | 6 | 2 | 4 | 6 | 9 |
7 | 1 | 2 | | | 7 | 1 | 3 | | |
8 | 0 | 1 | | | 8 | 1 | | | |
| 甲 | | | | 乙 | | |
(1)分别求甲乙两个小组成绩的平均数与方差;
(2)分析比较甲乙两个小组的成绩;
(3)从甲组高于70分的同学中,任意抽取2名同学,求恰好有一名同学的得分在[80,90)的概率.