- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 条形统计图
- 折线统计图
- 扇形统计图
- 频率分布表
- 频率分布直方图
- 频率分布折线图
- 茎叶图
- 众数
- 中位数
- + 平均数
- 计算几个数的平均数
- 根据平均数求参数
- 平均数的和差倍分性质
- 由频率分布直方图估计平均数
- 由茎叶图计算平均数
- 用平均数的代表意义解决实际问题
- 众数、平均数、中位数的比较
- 极差、方差、标准差
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
在一次53.5公里的自行车个人赛中,25名参赛选手的成绩(单位:分钟)的茎叶图如图所示.

(1)现将参赛选手按成绩由好到差编为1~25号,再用系统抽样方法从中选取5人.已知选手甲的成绩为85分钟.若甲被选取,求被选取的其余4名选手的成绩的平均数;
(2)若从总体中选取一个样本,使得该样本的平均水平与总体相同,且样本的方差不大于7,则称选取的样本具有集中代表性.试从总体(25名参赛选手的成绩)选取一个具有集中代表性且样本容量为5的样本,并求该样本的方差.

(1)现将参赛选手按成绩由好到差编为1~25号,再用系统抽样方法从中选取5人.已知选手甲的成绩为85分钟.若甲被选取,求被选取的其余4名选手的成绩的平均数;
(2)若从总体中选取一个样本,使得该样本的平均水平与总体相同,且样本的方差不大于7,则称选取的样本具有集中代表性.试从总体(25名参赛选手的成绩)选取一个具有集中代表性且样本容量为5的样本,并求该样本的方差.
某市为了解本市2万名学生的汉字书写水平,在全市范围内进行了汉字听写考试,现从某校随机抽取了50名学生,将所得成绩整理后,发现其成绩全部介于
之间,将其成绩按如下分成六组,得到频数分布表

(1)在答题卡上作出这些数据的频率分布直方图;
(2)估算该校50名学生成绩的平均值
和中位数(同一组中的数据用该组区间的中点值作代表);
(3)以该校50名学生成绩的频率作为概率,试估计该市分数在
的人数.

成绩 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
人数 | 4 | 10 | 16 | 10 | 6 | 4 |

(1)在答题卡上作出这些数据的频率分布直方图;
(2)估算该校50名学生成绩的平均值

(3)以该校50名学生成绩的频率作为概率,试估计该市分数在

积极行动起来,共建节约型社会!某居民小区200户居民参加了节水行动,现统计了10户家庭一个月的节水情况,将有关数据整理如下:
请你估计该200户家庭这个月节约用水的总量是( )
节水量(单位:吨) | 0.5 | 1 | 1.5 | 2 |
家庭数(户) | 2 | 3 | 4 | 1 |
请你估计该200户家庭这个月节约用水的总量是( )
A.240吨 | B.360吨 | C.180吨 | D.200吨 |
为了考察某校各班参加课外书法小组的人数,从全校随机抽取5个班级,把每个班级参加该小组的人数作为样本数据.已知样本平均数为7,样本方差为4,且样本数据互不相同,则样本数据中的最大值为 ( )
A.10 | B.9 | C.11 | D.8 |
毕节市正实施“五城同创”计划。为搞好卫生维护工作,政府招聘了200名市民志愿者,按年龄情况进行统计的频率分布表和频率分布直方图如下:

(1)频率分布表中的①②③位置应填什么数?补全频率分布直方图;
(2)根据频率分布直方图估计这200名志愿者的平均年龄.
分组(岁) | 频数 | 频率 |
[30,35) | 20 | 0.1 |
[35,40) | 20 | 0.1 |
[40,45) | ① | 0.2 |
[45,50) | ② | ③ |
[50,55] | 40 | 0.2 |
合计 | 200 | 1 |

(1)频率分布表中的①②③位置应填什么数?补全频率分布直方图;
(2)根据频率分布直方图估计这200名志愿者的平均年龄.
甲、乙两名运动员在某项测试中的6次成绩如茎叶图所示,
,
分别表示甲乙两名运动员这项测试成绩的平均数,
,
分别表示甲乙两名运动员这项测试成绩的标准差,则有 ( )






A.![]() | B.![]() ![]() ![]() |
C.![]() | D.![]() |
某研究小组为了研究某品牌智能手机在正常使用情况下的电池供电时间,分别从该品牌手机的甲、乙两种型号中各选取
部进行测试,其结果如下:
(1)求甲、乙两种手机供电时间的平均值与方差,并判断哪种手机电池质量好;
(2)为了进一步研究乙种手机的电池性能,从上述
部乙种手机中随机抽取
部,记所抽
部手机供电时间不小于
小时的个数为
,求
的分布列和数学期望.

甲种手机供电时间(小时) | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
乙种手机供电时间(小时) | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
(1)求甲、乙两种手机供电时间的平均值与方差,并判断哪种手机电池质量好;
(2)为了进一步研究乙种手机的电池性能,从上述






一企业从某生产线上随机抽取40件产品,测量这些产品的某项技术指标值
,得到如下的频数表
(1)估计该技术指标值的平均数(以各组区间中点值为代表);
(2)若
,则该产品不合格,其余合格产品。产生一件产品,若是合格品,可盈利100元,若不是合格品则亏损20元。从该生产线生产的产品中任取2件,记
为这2件产品的总利润,求随机变量
的分布列和期望值。

![]() | ![]() | ![]() | ![]() | ![]() |
频数 | 3 | 15 | 17 | 5 |
(1)估计该技术指标值的平均数(以各组区间中点值为代表);
(2)若


