- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 条形统计图
- 折线统计图
- 扇形统计图
- 频率分布表
- + 频率分布直方图
- 绘制频率分布直方图
- 补全频率分布直方图
- 由频率分布直方图计算频率、频数、样本容量、总体容量
- 频率分布直方图的优缺点与适用对象
- 频率分布直方图的实际应用
- 频率分布折线图
- 茎叶图
- 众数
- 中位数
- 平均数
- 极差、方差、标准差
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
2018年央视大型文化节目《经典咏流传》的热播,在全民中掀起了诵读诗词的热潮.某大学社团调查了该校文学院300名学生每天诵读诗词的时间(所有学生诵读时间都在两小时内),并按时间(单位:分钟)将学生分成六个组:
,
,
,
,
,
,经统计得到了如图所
示的频率分布直方图
(Ⅰ)求频率分布直方图中
的值,并估计该校文学院的学生每天诵读诗词的时间的平均数;
(Ⅱ)若两个同学诵读诗词的时间
满足
,则这两个同学组成一个“Team”,已知从每天诵读时间小于20分钟和大于或等于80分钟的所有学生中用分层抽样的方法抽取了5人,现从这5人中随机选取2人,求选取的两人能组成一个“Team”的概率.






示的频率分布直方图
(Ⅰ)求频率分布直方图中

(Ⅱ)若两个同学诵读诗词的时间



为了研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:
)的分组区间为
,
,
,
,
,将其按从左到右的顺序分别编号为第一组,第二组,
,第五组,如图是根据试验数据制成的频率分布直方图,已知第一组与第二组共有20人,第三组没有疗效的有6人,则第三组中有疗效的人数为__________.








如下是一个容量为200的样本的频率分布直方图,根据图中数据填空:

(1)样本数据落在范围[5,9)的频率为_________;(2)样本数据落在范围[9,13)的频数为_________.

(1)样本数据落在范围[5,9)的频率为_________;(2)样本数据落在范围[9,13)的频数为_________.
(本题满分12分)某食品厂为了检查一条自动包装流水线的生产情况,随机抽取该流水线上
件产品作为样本称出它们的重量(单位:克),重量的分组区间为
,
,,
,由此得到样本的频率分布直方图,如图所示.

(1)根据频率分布直方图,求重量超过
克的产品数量;
(2)在上述抽取的
件产品中任取
件,设
为重量超过
克的产品数量,求
的分布列;
(3)从该流水线上任取
件产品,求恰有
件产品的重量超过
克的概率.





(1)根据频率分布直方图,求重量超过

(2)在上述抽取的





(3)从该流水线上任取



在2018年3月郑州第二次模拟考试中,某校共有100名文科学生参加考试,其中语文考试成绩低于130的占95%人,数学成绩的频率分布直方图如图:

(Ⅰ)如果成绩不低于130的为特别优秀,这100名学生中本次考试语文、数学成绩特别优秀的大约各多少人?
(Ⅱ)如果语文和数学两科都特别优秀的共有3人.
(ⅰ)从(Ⅰ)中的这些同学中随机抽取2人,求这两人两科成绩都优秀的概率.
(ⅱ)根据以上数据,完成
列联表,并分析是否有99%的把握认为语文特别优秀的同学,数学也特别优秀.


(Ⅰ)如果成绩不低于130的为特别优秀,这100名学生中本次考试语文、数学成绩特别优秀的大约各多少人?
(Ⅱ)如果语文和数学两科都特别优秀的共有3人.
(ⅰ)从(Ⅰ)中的这些同学中随机抽取2人,求这两人两科成绩都优秀的概率.
(ⅱ)根据以上数据,完成

| 语文特别优秀 | 语文不特别优秀 | 合计 |
数学特别优秀 | | | |
数学不特别优秀 | | | |
合计 | | | |

![]() | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
某校高一(1)班全体男生的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如图所示,据此解答如下问题:

(1)求该班全体男生的人数;
(2)求分数在
之间的男生人数,并计算频率分布直方图中
之间的矩形的高.

(1)求该班全体男生的人数;
(2)求分数在


当今,手机已经成为人们不可或缺的交流工具,人们常常把喜欢玩手机的人冠上了名号“低头族”,手机已经严重影响了人们的生活.—媒体为调查市民对低头族的认识,从某社区的500名市民中随机抽取
名市民,按年龄情况进行统计的频率分布表和频率分布直方图如图:


(1)求出表中
的值,并补全频率分布直方图;
(2)媒体记者为了做好调查工作,决定在第2,4,5组中用分层抽样的方法抽取6名市民进行问卷调查, 再从这6名市民中随机抽取2名接受电视采访,求第2组至少有一名接受电视采访的概率.



(1)求出表中

(2)媒体记者为了做好调查工作,决定在第2,4,5组中用分层抽样的方法抽取6名市民进行问卷调查, 再从这6名市民中随机抽取2名接受电视采访,求第2组至少有一名接受电视采访的概率.
已知产品
的质量采用综合指标值
进行衡量,
为一等品;
为二等品;
为三等品.我市一家工厂准备购进新型设备以提高生产产品
的效益,在某供应商提供的设备中任选一个试用,生产了一批产品并统计相关数据,得到频率分布直方图:

(1)估计该新型设备生产的产品
为二等品的概率;
(2)根据这家工厂的记录,产品各等次的销售率(某等次产品销量与其对应产量的比值)及单件售价情况如下:
根据以往的销售方案,未售出的产品统一按原售价的
全部处理完.已知该工厂认购该新型设备的前提条件是,该新型设备生产的产品同时满足下列两个条件:
①综合指标值的平均数不小于
(同一组中的数据用该组区间的中点值作代表);
②单件平均利润值不低于
元.
若该新型设备生产的产品
的成本为
元/件,月产量为
件,在销售方案不变的情况下,根据以上图表数据,分析该新型设备是否达到该工厂的认购条件.







(1)估计该新型设备生产的产品

(2)根据这家工厂的记录,产品各等次的销售率(某等次产品销量与其对应产量的比值)及单件售价情况如下:
| 一等品 | 二等品 | 三等品 |
销售率 | ![]() | ![]() | ![]() |
单件售价 | ![]() | ![]() | ![]() |
根据以往的销售方案,未售出的产品统一按原售价的

①综合指标值的平均数不小于

②单件平均利润值不低于

若该新型设备生产的产品



某企业根据供销合同生产某种型号零件10万件,规定:零件长度(单位:毫米)在区间
内,则为一等品;若长度在
或
内,则为二等品;否则为不合格产品.现从生产出的零件中随机抽取100件作样本,其长度数据的频率分布直方图如图所示.
(1)试估计该样本的平均数;
(2)根据合同,企业生产的每件一等品可获利10元,每件二等品可获利8元,每件不合格产品亏损6元,若用样本估计总体,试估算该企业生产这批零件所获得的利润.



(1)试估计该样本的平均数;
(2)根据合同,企业生产的每件一等品可获利10元,每件二等品可获利8元,每件不合格产品亏损6元,若用样本估计总体,试估算该企业生产这批零件所获得的利润.

某贫困地区有1500户居民,其中平原地区1050户,山区450户,为调查该地区2017年家庭收入情况,从而更好地实施“精准扶贫”,采用分层抽样的方法,收集了150户家庭2017年年收入的样本数据(单位:万元)
(I)应收集多少户山区家庭的样本数据?
(Ⅱ)根据这150个样本数据,得到2017年家庭收入的频率分布直方图(如图所示),其中样本数据分组区间为
,
,
,
,
,
.如果将频率率视为概率,估计该地区2017年家庭收入超过1.5万元的概率;
(Ⅲ)样本数据中,由5户山区家庭的年收入超过2万元,请完成2017年家庭收入与地区的列联表,并判断是否有90%的把握认为“该地区2017年家庭年收入与地区有关”?
附:

(I)应收集多少户山区家庭的样本数据?
(Ⅱ)根据这150个样本数据,得到2017年家庭收入的频率分布直方图(如图所示),其中样本数据分组区间为






(Ⅲ)样本数据中,由5户山区家庭的年收入超过2万元,请完成2017年家庭收入与地区的列联表,并判断是否有90%的把握认为“该地区2017年家庭年收入与地区有关”?
附:

![]() | 0.100 | 0.050 | 0.010 | 0.001 |
![]() | 2.706 | 3.841 | 6.635 | 10.828 |
| 超过2万元 | 不超过2万元 | 总计 |
平原地区 | | | |
山区 | 5 | | |
总计 | | | |
