- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 条形统计图
- 折线统计图
- 扇形统计图
- 频率分布表
- + 频率分布直方图
- 绘制频率分布直方图
- 补全频率分布直方图
- 由频率分布直方图计算频率、频数、样本容量、总体容量
- 频率分布直方图的优缺点与适用对象
- 频率分布直方图的实际应用
- 频率分布折线图
- 茎叶图
- 众数
- 中位数
- 平均数
- 极差、方差、标准差
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某地区工会利用 “健步行APP”开展健步走积分奖励活动.会员每天走5千步可获积分30分(不足5千步不积分),每多走2千步再积20分(不足2千步不积分).为了解会员的健步走情况,工会在某天从系统中随机抽取了1000名会员,统计了当天他们的步数,并将样本数据分为
,
,
,
,
,
,
,
,
九组,整理得到如下频率分布直方图:

(Ⅰ)求当天这1000名会员中步数少于11千步的人数;
(Ⅱ)从当天步数在
,
,
的会员中按分层抽样的方式抽取6人,再从这6人中随机抽取2人,求这2人积分之和不少于200分的概率;
(Ⅲ)写出该组数据的中位数(只写结果).










(Ⅰ)求当天这1000名会员中步数少于11千步的人数;
(Ⅱ)从当天步数在



(Ⅲ)写出该组数据的中位数(只写结果).
流行性感冒多由病毒引起,据调查,空气相对湿度过大或过小时,都有利于一些病毒的繁殖和传播.科学测定,当空气相对湿度大于65%或小于40%时,病毒繁殖滋生较快,当空气相对湿度在45%—55%时,病毒死亡较快,现随机抽取了全国部分城市,获得了它们的空气月平均相对湿度共300个数据,整理得到数据分组及频数分布表,其中为了记录方便,将空气相对湿度在
%~
%时记为区间
.

(I)求上述数据中空气相对湿度使病毒死亡较快的频率;
(Ⅱ)从区间[ 15,35)的数据中任取两个数据,求恰有一个数据位于[25,35)的概率;
(Ⅲ)假设同一组中的每个数据可用该组区间的中点值代替,试估计样本中空气月平均相对湿度的平均数在第几组(只需写出结论).




(I)求上述数据中空气相对湿度使病毒死亡较快的频率;
(Ⅱ)从区间[ 15,35)的数据中任取两个数据,求恰有一个数据位于[25,35)的概率;
(Ⅲ)假设同一组中的每个数据可用该组区间的中点值代替,试估计样本中空气月平均相对湿度的平均数在第几组(只需写出结论).
我校对高二600名学生进行了一次知识测试,并从中抽取了部分学生的成绩(满分100分)作为样本,绘制了下面尚未完成的频率分布表和频率分布直方图.
(1)填写频率分布表中的空格,补全频率分布直方图,并标出每个小矩形对应的纵轴数据;
(2)请你估算该年级学生成绩的中位数;
(3)如果用分层抽样的方法从样本分数在[60,70)和[80,90)的人中共抽取6人,再从6人中选2人,求2人分数都在[80,90)的概率.
分 组 | 频 数 | 频 率 |
[50,60) | 2 | 0.04 |
[60,70) | 8 | 0.16 |
[70,80) | 10 | |
[80,90) | | |
[90,100] | 14 | 0.28 |
合 计 | | 1.00 |
(1)填写频率分布表中的空格,补全频率分布直方图,并标出每个小矩形对应的纵轴数据;
(2)请你估算该年级学生成绩的中位数;
(3)如果用分层抽样的方法从样本分数在[60,70)和[80,90)的人中共抽取6人,再从6人中选2人,求2人分数都在[80,90)的概率.

某食品厂为了检查甲、乙两条自动包装流水线的生产情况,随机在这两条流水线上各抽取40件产品作为样本称出它们的质量(单位:克),质量值落在
的产品为合格品,否则为不合格品.如表是甲流水线样本频数分布表,如图是乙流水线样本的频率分布直方图.

甲流水线样本频数分布表:
(1)根据上表数据作出甲流水线样本的频率分布直方图;
(2)若以频率作为概率,试估计从乙流水线任取
件产品,该产品恰好是合格品的概率;
(3)由以上统计数据完成下面
列联表,能否在犯错误的概率不超过
的前提下认为产品的包装质量与两条自动包装流水线的选择有关?
附表:
(参考公式:
)

产品质量/克 | 频数 |
(490,495] | 6 |
(495,500] | 8 |
(500,505] | 14 |
(505,510] | 8 |
(510,515] | 4 |

甲流水线样本频数分布表:
| 甲流水线 | 乙流水线 | 总计 |
合格品 | ![]() | ![]() | |
不合格品 | ![]() | ![]() | |
总计 | | | ![]() |
(1)根据上表数据作出甲流水线样本的频率分布直方图;
(2)若以频率作为概率,试估计从乙流水线任取

(3)由以上统计数据完成下面


附表:
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
(参考公式:

某高中随机抽取部分高一学生调查其上学路上所需时间频(单位:分钟),并将所得数据绘制成频率分布直方图(如图),其中上学路上所需时间的范围是
,样本数据分组为
.

(1)求直方图中
的值;
(2)如果上学路上所需时间不少于1小时的学生可申请在学校住宿,若招生 1200名请估计新生中有多少名学生可以申请住宿;
(3)从学校的高一学生中任选4名学生,这4名学生中上学路上所需时间少于 40分钟的人数记为
,求
的分布列和数学期望.(以直方图中的频率作为概率).



(1)求直方图中

(2)如果上学路上所需时间不少于1小时的学生可申请在学校住宿,若招生 1200名请估计新生中有多少名学生可以申请住宿;
(3)从学校的高一学生中任选4名学生,这4名学生中上学路上所需时间少于 40分钟的人数记为


如图是60名学生参加数学竞赛的成绩(均为整数)的频率分布直方图,估计这次数学竞赛的及格率(60分及以上为及格)是( )


A.0.9 | B.0.75 | C.0.8 | D.0.7 |
某学校研究性学习小组对该校高三学生视力情况进行调查,在高三全体
名学生中随机抽取了
名学生的体检表,并得到如图所示的频率分布直方图.
(Ⅰ)若直方图中后四组的频数成等差数列,计算高三全体学生视力在
以下的人数,并估计这
名学生视力的中位数(精确到
);
(Ⅱ)学习小组发现,学习成绩突出的学生,近视的比较多,为了研究学生的视力与学习成绩是否有关系,对高三全体成绩名次在前
名和后
名的学生进行了调查,部分数据如表1,根据表1及临界表2中的数据,能否在犯错误的概率不超过
的前提下认为视力与学习成绩有关系?

(参考公式:
,其中
)


(Ⅰ)若直方图中后四组的频数成等差数列,计算高三全体学生视力在



(Ⅱ)学习小组发现,学习成绩突出的学生,近视的比较多,为了研究学生的视力与学习成绩是否有关系,对高三全体成绩名次在前




年段名次 是否近视 | 前![]() | 后![]() |
近 视 | ![]() | |
![]() | | ![]() |
![]() ![]() | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 2.072 | 2.706 | 3.84 | 5.024 | 6.635 | 7.879 | 10.83 |
(参考公式:


2014年5月12日,国家统计局公布了《2013年农民工监测调查报告》,报告显示:我国农
民工收入持续快速增长.某地区农民工人均月收入增长率如图1,并将人均月收入绘制成如
图2的不完整的条形统计图.

图1 图2
根据以上统计图来判断以下说法错误的是
民工收入持续快速增长.某地区农民工人均月收入增长率如图1,并将人均月收入绘制成如
图2的不完整的条形统计图.

图1 图2
根据以上统计图来判断以下说法错误的是
A.2013年农民工人均月收入的增长率是![]() |
B.2011年农民工人均月收入是![]() |
C.小明看了统计图后说:“农民工2012年的人均月收入比2011年的少了” |
D.2009年到2013年这五年中2013年农民工人均月收入最高 |
“日行一万步,健康你一生”的养生观念已经深入人心,由于研究性学习的需要,某大学生收集了手机“微信运动”团队中特定甲、乙两个班级
名成员一天行走的步数,然后采用分层抽样的方法按照
,
,
,
分层抽取了20名成员的步数,并绘制了如下尚不完整的茎叶图(单位:千步):

已知甲、乙两班行走步数的平均值都是44千步.
(1)求
的值;
(2)(ⅰ)若
,求甲、乙两个班级100名成员中行走步数在
,
,
,
各层的人数;
(ⅱ)若估计该团队中一天行走步数少于40千步的人数比处于
千步的人数少12人,求
的值.






已知甲、乙两班行走步数的平均值都是44千步.
(1)求

(2)(ⅰ)若





(ⅱ)若估计该团队中一天行走步数少于40千步的人数比处于


某地区对某路段公路上行驶的汽车速度实施监控,从中抽取
辆汽车进行测速分析,得到如图所示的时速的频率分布直方图,根据该图,时速在
以下的汽车有_____.


