- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 条形统计图
- 折线统计图
- 扇形统计图
- 频率分布表
- + 频率分布直方图
- 绘制频率分布直方图
- 补全频率分布直方图
- 由频率分布直方图计算频率、频数、样本容量、总体容量
- 频率分布直方图的优缺点与适用对象
- 频率分布直方图的实际应用
- 频率分布折线图
- 茎叶图
- 众数
- 中位数
- 平均数
- 极差、方差、标准差
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某养殖的水产品在临近收获时,工人随机从水中捕捞
只,其质量分别在
(单位:克),经统计分布直方图如图所示.

(1)求这组数据的众数;
(2)现按分层抽样从质量为
的水产品种随机抽取
只,在从这
只中随机抽取
只,求这
只水产品恰有
只在
内的概率;
(3)某经销商来收购水产品时,该养殖场现还有水产品共计约
只要出售,经销商提出如下两种方案:
方案A:所有水产品以
元/只收购;
方案B:对于质量低于
克的水产品以
元/只收购,不低于
克的以
元/只收购,
通过计算确定养殖场选择哪种方案获利更多?




(1)求这组数据的众数;
(2)现按分层抽样从质量为







(3)某经销商来收购水产品时,该养殖场现还有水产品共计约

方案A:所有水产品以

方案B:对于质量低于




通过计算确定养殖场选择哪种方案获利更多?
为了解学生在课外活动方面的支出情况,抽取了
个同学进行调查,结果显示这些学生的支出金额(单位:元)都在[10,50],其中支出金额在[30,50]的学生有134人,频率分布直方图如图所示,则
=()




A.150 | B.160 | C.180 | D.200 |
树立和践行“绿水青山就是金山银山,坚持人与自然和谐共生”的理念越来越深入人心,已形成了全民自觉参与,造福百姓的良性循环.据此,某网站推出了关于生态文明建设进展情况的调查,调查数据表明,环境治理和保护问题仍是百姓最为关心的热点,参与调查者中关注此问题的约占
.现从参与关注生态文明建设的人群中随机选出200人,并将这200人按年龄分组:第1组
,第2组
,第3组
,第4组
,第5组
,得到的频率分布直方图如图所示.
(1)求出
的值;
(2)求这200人年龄的样本平均数(同一组数据用该区间的中点值作代表)和中位数(精确到小数点后一位);
(3)现在要从年龄较小的第1,2组中用分层抽样的方法抽取5人,再从这5人中随机抽取3人进行问卷调查,求第2组恰好抽到2人的概率.







(1)求出

(2)求这200人年龄的样本平均数(同一组数据用该区间的中点值作代表)和中位数(精确到小数点后一位);
(3)现在要从年龄较小的第1,2组中用分层抽样的方法抽取5人,再从这5人中随机抽取3人进行问卷调查,求第2组恰好抽到2人的概率.
2018年中央电视台春节联欢晚会分会场之一落户黔东南州黎平县肇兴侗寨,黔东南州某中学高二社会实践小组就社区群众春晚节目的关注度进行了调查,随机抽取80名群众进行调查,将他们的年龄分成6段:
,
,
,
,
,
,得到如图所示的频率分布直方图.
(Ⅰ)求这80名群众年龄的中位数;
(Ⅱ)将频率视为概率,现用随机抽样方法从该社区群众中每次抽取1人,共抽取3次,记被抽取的3人中年龄在
的人数为
,若每次抽取的结果是相互独立的,求
的分布列,及数学期望
.






(Ⅰ)求这80名群众年龄的中位数;
(Ⅱ)将频率视为概率,现用随机抽样方法从该社区群众中每次抽取1人,共抽取3次,记被抽取的3人中年龄在





为了比较注射
,
两种药物后产生的皮肤疱疹的面积,选200只家兔做试验,将这200只家兔随机地分成两组,毎组100只,其中一组注射药物
,另一组注射药物
.表1和表2分别是注射药物
和
后的试验结果.(疱疹面积单位:
)
表1:注射药物
后皮肤疱疹面积的频数分布表

表2:注射药物
后皮肤疱疹面积的频数分布表

(1)完成下面频率分布直方图,并比较注射两种药物后疱疹面积的中位数大小;


(2)完成下面
列联表,并回答能否有
的把握认为“注射药物
后的疱疹面积与注射药物
后的疱疹面积有差异”.
表3:







表1:注射药物


表2:注射药物


(1)完成下面频率分布直方图,并比较注射两种药物后疱疹面积的中位数大小;


(2)完成下面




表3:

2017年5月14日至15日,“一带一路”国际合作高峰论坛在中国首都北京举行,会议期间,达成了多项国际合作协议.假设甲、乙两种品牌的同类产品出口某国家的市场销售量相等,该国质量检验部门为了解他们的使用寿命,现从这两种品牌的产品中分别随机抽取300个进行测试,结果统计如下图所示,已知乙品牌产品使用寿命小于200小时的概率估计值为
.
(1)求
的值;
(2)估计甲品牌产品寿命小于200小时的概率;
(3)这两种品牌产品中,某个产品已使用了200小时,试估计该产品是乙品牌的概率.

(1)求

(2)估计甲品牌产品寿命小于200小时的概率;
(3)这两种品牌产品中,某个产品已使用了200小时,试估计该产品是乙品牌的概率.

英格兰足球超级联赛,简称英超,是英国足球最高等级的职业足球联赛,也是世界最高水平的职业足球联赛之一,目前英超参赛球队有20个,在2014-2015赛季结束后将各队积分分成6段,并绘制出了如图所示的频率分布直方图(图中各分组区间包括左端点,不包括右端点,如第一组表示积分在[30,40)内).根据图中现有信息,解答下面问题:

(Ⅰ)求积分在[40,50)内的频率,并补全这个频率分布直方图;
(Ⅱ)从积分在[40,60)中的球队中任选取2个球队,求选取的2个球队的积分在频率分布直方图中处于不同组的概率.

(Ⅰ)求积分在[40,50)内的频率,并补全这个频率分布直方图;
(Ⅱ)从积分在[40,60)中的球队中任选取2个球队,求选取的2个球队的积分在频率分布直方图中处于不同组的概率.
为了调查中小学课外使用互联网的情况,教育部向华东、华北、华南和西部地区60所中小学发出问卷
份,
名学生参加了问卷调查,并根据所得数据画出样本的频率分布直方图(如图).
(1)要从这
名中小学中用分层抽样的方法抽取
名中小学生进一步调查,则在
(小时)时间段内应抽出的人数是多少?
(2)若希望
的中小学生每天使用互联网时间不少于
(小时),请估计
的值,并说明理由.


(1)要从这



(2)若希望




某电子商务公司对10000名网络购物者2014年度的消费情况进行统计,发现消费金额(单位:万元)都在区间
内,其频率分布直方图如图所示.

(Ⅰ)直方图中的
_________;
(Ⅱ)在这些购物者中,消费金额在区间
内的购物者的人数为_________.


(Ⅰ)直方图中的

(Ⅱ)在这些购物者中,消费金额在区间

“世界睡眠日”定在每年的3月21日,某网站于2017年3月14日到3月20日持续一周网上调查公众日平均睡眠的时间(单位:小时),共有2 000人参加调查,现将数据整理分组后如下表所示.
(1)求出表中空白处的数据,并将表格补充完整.
(2)画出频率分布直方图.
(3)为了对数据进行分析,采用了计算机辅助计算.程序框图如图所示,求输出的S值,并说明S的统计意义.
序号(i) | 分组睡眠时间 | 组中值(mi) | 频数(人数) | 频率(fi) |
1 | [4,5) | 4.5 | 80 | |
2 | [5,6) | 5.5 | 520 | 0.26 |
3 | [6,7) | 6.5 | 600 | 0.30 |
4 | [7,8) | 7.5 | | |
5 | [8,9) | 8.5 | 200 | 0.10 |
6 | [9,10] | 9.5 | 40 | 0.02 |
(1)求出表中空白处的数据,并将表格补充完整.
(2)画出频率分布直方图.
(3)为了对数据进行分析,采用了计算机辅助计算.程序框图如图所示,求输出的S值,并说明S的统计意义.
