- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 条形统计图
- 折线统计图
- 扇形统计图
- 频率分布表
- + 频率分布直方图
- 绘制频率分布直方图
- 补全频率分布直方图
- 由频率分布直方图计算频率、频数、样本容量、总体容量
- 频率分布直方图的优缺点与适用对象
- 频率分布直方图的实际应用
- 频率分布折线图
- 茎叶图
- 众数
- 中位数
- 平均数
- 极差、方差、标准差
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
207年8月8日晚我国四川九赛沟县发生了7.0级地震,为了解与掌握一些基本的地震安全防护知识,某小学在9月份开学初对全校学生进行了为期一周的知识讲座,事后并进行了测试(满分100分),根据测试成绩评定为“合格”(60分以上包含60分)、“不合格”两个等级,同时对相应等级进行量化:“合格”定为10分,“不合格”定为5分.现随机抽取部分学生的答卷,统计结果及对应的频率分布直方图如图所示:

(1)求
的值;
(2)用分层抽样的方法,从评定等级为“合格”和“不合格”的学生中抽取10人进行座谈,现再从这10人中任选4人,记所选4人的量化总分为
,求
的分布列及数学期望
;
(3)设函数
(其中
表示
的方差)是评估安全教育方案成效的一种模拟函数.当
时,认定教育方案是有效的;否则认定教育方案应需调整,试以此函数为参考依据.在(2)的条件下,判断该校是否应调整安全教育方案?
等级 | 不合格 | 合格 | ||
得分 | ![]() | ![]() | ![]() | ![]() |
频数 | 6 | ![]() | 24 | ![]() |

(1)求

(2)用分层抽样的方法,从评定等级为“合格”和“不合格”的学生中抽取10人进行座谈,现再从这10人中任选4人,记所选4人的量化总分为



(3)设函数




某医药公司生产五中抗癌类药物,根据销售统计资料,该公司的五种药品
,
,
,
,
的市场需求量(单位:件)的频率分布直方图如图所示.

(1)求
的值;
(2)若将产品的市场需求量的频率视为概率,现从
、
两种产品中利用分层抽样的方法随机抽取5件,然后从这5件产品中任取3件,求“至少有2件取自
产品”的概率.






(1)求

(2)若将产品的市场需求量的频率视为概率,现从



为检验寒假学生自主学习的效果,年级部对某班50名学生各科的检测成绩进行了统计,下面是政治成绩的频率分布直方图,其中成绩分组区间是:
,
,
,
,
,
.

(1)求图中的
值及政治成绩的中位数;
(2)从分数在
中选定6人记为
,
,…,
,从分数在
中选定3人,记为
,
,
,组成一个学习小组.现从这6人和3人中各选1人作为组长,求
被选中且
未被选中的概率.







(1)求图中的

(2)从分数在










某教育主管部门到一所中学检查高三年级学生的体质健康情况,从中抽取了
名学生的体质测试成绩,得到的频率分布直方图如图1所示,样本中前三组学生的原始成绩按性别分类所得的茎叶图如图2所示.

(Ⅰ)求
,
,
的值;
(Ⅱ)估计该校高三学生体质测试成绩的平均数
和中位数
;
(Ⅲ)若从成绩在
的学生中随机抽取两人重新进行测试,求至少有一名男生的概率.


(Ⅰ)求



(Ⅱ)估计该校高三学生体质测试成绩的平均数


(Ⅲ)若从成绩在

下面是追踪调查200个某种电子元件寿命(单位:
)频率分布直方图,如图:

其中300-400、400-500两组数据丢失,下面四个说法中有且只有一个与原数据相符,这个说法是( )
①寿命在300-400的频数是90;
②寿命在400-500的矩形的面积是0.2;
③用频率分布直方图估计电子元件的平均寿命为:

④寿命超过
的频率为0.3


其中300-400、400-500两组数据丢失,下面四个说法中有且只有一个与原数据相符,这个说法是( )
①寿命在300-400的频数是90;
②寿命在400-500的矩形的面积是0.2;
③用频率分布直方图估计电子元件的平均寿命为:

④寿命超过

A.① | B.② | C.③ | D.④ |
某商场在一天的促销活动中,对这天9时到14时的销售额进行统计,其频率分布直方图如图所示,已知11时至12时的销售额为20万元,则10时到11时的销售额为( )


A.![]() | B.![]() | C.![]() | D.![]() |
在某单位的食堂中,食堂每天以10元/斤的价格购进米粉,然后以4.4元/碗的价格出售,每碗内含米粉0.2斤,如果当天卖不完,剩下的米粉以2元/斤的价格卖给养猪场.根据以往统计资料,得到食堂某天米粉需求量的频率分布直方图如图所示,若食堂购进了80斤米粉,以
(斤)(其中
)表示米粉的需求量,
(元)表示利润.
(1)估计该天食堂利润不少于760元的概率;
(2)在直方图的需求量分组中,以区间中间值作为该区间的需求量,以需求量落入该区间的频率作为需求量在该区间的概率,求
的分布列和数学期望.



(1)估计该天食堂利润不少于760元的概率;
(2)在直方图的需求量分组中,以区间中间值作为该区间的需求量,以需求量落入该区间的频率作为需求量在该区间的概率,求


树立和践行“绿水青山就是金山银山,坚持人与自然和谐共生”的理念越来越深入人心,已形成了全民自觉参与,造福百姓的良性循环.据此,某网站退出了关于生态文明建设进展情况的调查,调查数据表明,环境治理和保护问题仍是百姓最为关心的热点,参与调查者中关注此问题的约占
.现从参与关注生态文明建设的人群中随机选出200人,并将这200人按年龄分组:第1组
,第2组
,第3组
,第4组
,第5组
,得到的频率分布直方图如图所示.

(I)求出
的值;
(II)求出这200人年龄的样本平均数(同一组数据用该区间的中点值作代表)和中位数(精确到小数点后一位);
(III)现在要从年龄较小的第1,2组中用分层抽样的方法抽取5人,再从这5人中随机抽取3人进行问卷调查,求第2组恰好抽到2人的概率.







(I)求出

(II)求出这200人年龄的样本平均数(同一组数据用该区间的中点值作代表)和中位数(精确到小数点后一位);
(III)现在要从年龄较小的第1,2组中用分层抽样的方法抽取5人,再从这5人中随机抽取3人进行问卷调查,求第2组恰好抽到2人的概率.
据调查显示,某高校
万男生的身高服从正态分布
,现从该校男生中随机抽取
名进行身高测量,将测量结果分成
组:
,
,
,
,
,
,并绘制成如图所示的频率分布直方图.

(Ⅰ)求这
名男生中身高在
(含
)以上的人数;
(Ⅱ)从这
名男生中身高在
以上(含
)的人中任意抽取
人,该
人中身高排名(从高到低)在全校前
名的人数记为
,求
的数学期望.
(附:参考数据:若
服从正态分布
,则
,
,
.)











(Ⅰ)求这



(Ⅱ)从这








(附:参考数据:若





某学校高三有
名学生,按性别分层抽样从高三学生中抽取
名男生,
名女生期未某学科的考试成绩,得到如下所示男生成绩的频率分布直方图和女生成绩的茎叶图.

(1)试计算男生考试成绩的平均分
与女生考试成绩的中位数(每组数据取区间的中点值);
(2)根据频率分布直方图可以认为,男生这次考试的成绩服从正态分布
,试计算男生成绩落在区间
内的概率及全校考试成绩在
内的男生的人数(结果保留整数);
(3)若从抽取的
名学生中考试成绩优势(
分以上包括
分)的学生中再选取
名学生,作学习经验交流,记抽取的男生人数为
,求
的分布列与数学期望.
参考数据,若
,则
,
,
.





(1)试计算男生考试成绩的平均分

(2)根据频率分布直方图可以认为,男生这次考试的成绩服从正态分布



(3)若从抽取的






参考数据,若



