- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 条形统计图
- 折线统计图
- 扇形统计图
- 频率分布表
- + 频率分布直方图
- 绘制频率分布直方图
- 补全频率分布直方图
- 由频率分布直方图计算频率、频数、样本容量、总体容量
- 频率分布直方图的优缺点与适用对象
- 频率分布直方图的实际应用
- 频率分布折线图
- 茎叶图
- 众数
- 中位数
- 平均数
- 极差、方差、标准差
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某校高一年级共有
名学生,其中男生
名,女生
名,该校组织了一次口语模拟考试(满分为
分).为研究这次口语考试成绩为高分是否与性别有关,现按性别采用分层抽样抽取
名学生的成绩,按从低到高分成
,
,
,
,
,
,
七组,并绘制成如图所示的频率分布直方图.已知
的频率等于
的频率,
的频率与
的频率之比为
,成绩高于
分的为“高分”.

(1)估计该校高一年级学生在口语考试中,成绩为“高分”的人数;
(2)请你根据已知条件将下列
列联表补充完整,并判断能否在犯错误的概率不超过0.001的前提下认为该校高一年级学生在本次口语考试中的成绩是否及格(
分以上(含
分)为及格)与性别有关?
附临界值表:
参考公式:
,
.



















(1)估计该校高一年级学生在口语考试中,成绩为“高分”的人数;
(2)请你根据已知条件将下列



| 口语成绩及格 | 口语成绩不及格 | 合计 |
男生 | ![]() | ![]() | |
女生 | ![]() | ![]() | |
合计 | | | ![]() |
附临界值表:
![]() | 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
![]() | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
参考公式:


根据以往的经验,某建筑工程施工期间的降水量
(单位:
)对工期的影响如下表:
根据某气象站的资料,某调查小组抄录了该工程施工地某月前
天的降水量的数据,绘制得到降水量的折线图,如下图所示.

(1)求这
天的平均降水量;
(2)根据降水量的折线图,分别估计该工程施工延误天数
的概率.


降水量![]() | ![]() | ![]() | ![]() | ![]() |
工期延误天数![]() | 0 | 1 | 3 | 6 |
根据某气象站的资料,某调查小组抄录了该工程施工地某月前


(1)求这

(2)根据降水量的折线图,分别估计该工程施工延误天数

某市统计局就某地居民的月收入调查了10000人,并根据所得数据画出样本的频率分布直方图,每个分组包括左端点,不包括右端点,如第一组表示收入在
.

(1)求居民收入在
的频率;
(2)根据频率分布直方图算出样本数据的中位数、平均数及其众数;
(3)为了分析居民的收入与年龄、职业等方面的关系,从这10000人中用分层抽样方法抽出100人作进一步分析,则应月收入为
的人中抽取多少人?


(1)求居民收入在

(2)根据频率分布直方图算出样本数据的中位数、平均数及其众数;
(3)为了分析居民的收入与年龄、职业等方面的关系,从这10000人中用分层抽样方法抽出100人作进一步分析,则应月收入为

下面给出的是某校高二(2)班50名学生某次测试数学成绩的频率分布折线图,根据图中所提供的信息,则下列结论正确的是


A.成绩是50分或100分的人数是0 | B.成绩为75分的人数为20 |
C.成绩为60分的频率为0.18 | D.成绩落在60—80分的人数为29 |
从高三学生中抽取
名学生参加数学竞赛,成绩(单位:分)的分组及各数据绘制的频率分布直方图如图所示,已知成绩的范围是区间
,且成绩在区间
的学生人数是
人.

(1)求
,
的值;
(2)若从数学成绩(单位:分)在
的学生中随机选取
人进行成绩分析.
①列出所有可能的抽取结果;
②设选取的
人中,成绩都在
内为事件
,求事件
发生的概率.





(1)求


(2)若从数学成绩(单位:分)在


①列出所有可能的抽取结果;
②设选取的




为了解某校学生的视力情况,随机地抽查了该校100名学生的视力情况,得到的频率分布直方图如下图,但不慎将部分数据丢失,仅知道后5组频数之和为70,则视力在4.6到4.7之间的学生数为( )


A.14 | B.16 | C.30 | D.32 |
某工厂有120名工人,其年龄都在20~ 60岁之间,各年龄段人数按[20,30),[30,40),[40,50),[50,60]分成四组,其频率分布直方图如下图所示.工厂为了开发新产品,引进了新的生产设备。现采用分层抽样法从全厂工人中抽取一个容量为20的样本参加新设备培训,培训结束后进行结业考试。已知各年龄段培训结业考试成绩优秀的人数如下表所示:


若随机从年龄段[20,30)和[40,50)的参加培训工人中各抽取1人,则这两人培训结业考试成绩恰有一人优秀的概率为___________.


若随机从年龄段[20,30)和[40,50)的参加培训工人中各抽取1人,则这两人培训结业考试成绩恰有一人优秀的概率为___________.
某工厂有120名工人,其年龄都在20~ 60岁之间,各年龄段人数按[20,30),[30,40),[40,50),[50,60]分成四组,其频率分布直方图如下图所示.工厂为了开发新产品,引进了新的生产设备,要求每个工人都要参加A、B两项培训,培训结束后进行结业考试。已知各年龄段两项培训结业考试成绩优秀的人数如下表所示。假设两项培训是相互独立的,结业考试也互不影响。

(1)若用分层抽样法从全厂工人中抽取一个容量为40的样本,求四个年龄段应分别抽取的人数;
(2)根据频率分布直方图,估计全厂工人的平均年龄;
(3)随机从年龄段[20,30)和[40,50)中各抽取1人,设这两人中A、B两项培训结业考试成绩都优秀的人数为X,求X的分布列和数学期望.

年龄分组 | A项培训成绩 优秀人数 | B项培训成绩 优秀人数 |
[20,30) | 27 | 16 |
[30,40) | 28 | 18 |
[40,50) | 16 | 9 |
[50,60] | 6 | 4 |
(1)若用分层抽样法从全厂工人中抽取一个容量为40的样本,求四个年龄段应分别抽取的人数;
(2)根据频率分布直方图,估计全厂工人的平均年龄;
(3)随机从年龄段[20,30)和[40,50)中各抽取1人,设这两人中A、B两项培训结业考试成绩都优秀的人数为X,求X的分布列和数学期望.
某协会对
,
两家服务机构进行满意度调查,在
,
两家服务机构提供过服务的市民中随机抽取了
人,每人分别对这两家服务机构进行独立评分,满分均为
分.整理评分数据,将分数以
为组距分成
组:
,
,
,
,
,
,得到
服务机构分数的频数分布表,
服务机构分数的频率分布直方图:

定义市民对服务机构评价的“满意度指数”如下:
(1)在抽样的
人中,求对
服务机构评价“满意度指数”为
的人数;
(2)从在
,
两家服务机构都提供过服务的市民中随机抽取
人进行调查,试估计对
服务机构评价的“满意度指数”比对
服务机构评价的“满意度指数”高的概率;
(3)如果从
,
服务机构中选择一家服务机构,以满意度出发,你会选择哪一家?说明理由.


















定义市民对服务机构评价的“满意度指数”如下:
分数 | ![]() | ![]() | ![]() |
满意度指数 | 0 | 1 | 2 |
(1)在抽样的



(2)从在





(3)如果从

