- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 条形统计图
- 折线统计图
- 扇形统计图
- 频率分布表
- + 频率分布直方图
- 绘制频率分布直方图
- 补全频率分布直方图
- 由频率分布直方图计算频率、频数、样本容量、总体容量
- 频率分布直方图的优缺点与适用对象
- 频率分布直方图的实际应用
- 频率分布折线图
- 茎叶图
- 众数
- 中位数
- 平均数
- 极差、方差、标准差
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某校进行文科、理科数学成绩对比,某次考试后,各随机抽取100名同学的数学考试成绩进行统计,其频率分布表如下.

(Ⅰ)根据数学成绩的频率分布表,求理科数学成绩的中位数的估计值;
(Ⅱ)请填写下面的列联表,并根据列联表判断是否有90%的把握认为数学成绩与文理科有关:

(Ⅲ)设文理科数学成绩相互独立,记
表示事件“文科、理科数学成绩都大于等于120分”,估计
的概率.
附:

(Ⅰ)根据数学成绩的频率分布表,求理科数学成绩的中位数的估计值;
(Ⅱ)请填写下面的列联表,并根据列联表判断是否有90%的把握认为数学成绩与文理科有关:

(Ⅲ)设文理科数学成绩相互独立,记


附:

![]() | 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
![]() | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
如图是依据某城市年龄在20岁到45岁的居民上网情况调查而绘制的频率分布直方图,现已知年龄在[30,35),[35,40),[40,45)的上网人数呈现递减的等差数列分布,则年龄在[35,40)的网民出现的频率为 ( )
A.0.04 | B.0.06 |
C.0.2 | D.0.3 |
(文)(2017·霍邱二中模拟)某个容量为100的样本的频率分布直方图如下,则在区间[4,5)上的数据的频数为 ( )
A.70 | B.0.3 |
C.30 | D.0.7 |
某大学对1 000名学生的自主招生水平测试成绩进行统计,得到样本频率分布直方图(如图),则这1 000名学生在该次自主招生水平测试中成绩不低于70分的学生数是( )


A.300 | B.400 | C.500 | D.600 |
交警随机抽取了途径某服务站的40辆小型轿车在经过某区间路段的车速(单位:
),现将其分成六组为
后得到如图所示的频率分布直方图.
(1)某小型轿车途经该路段,其速度在
以上的概率是多少?
(2)若对车速在
两组内进一步抽测两辆小型轿车,求至少有一辆小型轿车速度在
内的概率.


(1)某小型轿车途经该路段,其速度在

(2)若对车速在



某公司为了了解用户对其产品的满意度,从A,B两地区分别随机调查了40个用户,根据用户对其产品的满意度的评分,得到A地区用户满意度评分的频率分布直方图和B地区用户满意度评分的频率分布表.
A地区用户满意度评分的频率分布直方图

B地区用户满意度评分的频率分布表
(Ⅰ)在答题卡上作出B地区用户满意度评分的频率分布直方图,并通过此图比较两地区满意度评分的平均值及分散程度.(不要求计算出具体值,给出结论即可)
B地区用户满意度评分的频率分布直方图

(Ⅱ)根据用户满意度评分,将用户的满意度评分分为三个等级:
估计哪个地区的用户的满意度等级为不满意的概率大,说明理由.
A地区用户满意度评分的频率分布直方图

B地区用户满意度评分的频率分布表
满意度评分分组 | ![]() | ![]() | ![]() | ![]() | ![]() |
频数 | 2 | 8 | 14 | 10 | 6 |
(Ⅰ)在答题卡上作出B地区用户满意度评分的频率分布直方图,并通过此图比较两地区满意度评分的平均值及分散程度.(不要求计算出具体值,给出结论即可)
B地区用户满意度评分的频率分布直方图

(Ⅱ)根据用户满意度评分,将用户的满意度评分分为三个等级:
满意度评分 | 低于70分 | 70分到89分 | 不低于90分 |
满意度等级 | 不满意 | 满意 | 非常满意 |
估计哪个地区的用户的满意度等级为不满意的概率大,说明理由.
根据某水文观测点的历史统计数据,得到某条河流水位的频率分布直方图(如图),从图中可以看出,该水文观测点平均至少100年才遇到一次的洪水的最低水位是( )


A.48 m | B.49 m | C.50 m | D.51 m |
从某自动包装机包袋的食盐中,随机抽取
袋作为样本,按各袋的质量(单位:
)分成四组,
,相应的样本频率分布直方图如图所示.

(Ⅰ)估计样本的中位数是多少?落入
的频数是多少?
(Ⅱ)现从这台自动包装机包袋的大批量食盐中,随机抽取
袋,记
表示食盐质量属于
的袋数,依样本估计总体的统计思想,求
的分布列及期望.




(Ⅰ)估计样本的中位数是多少?落入

(Ⅱ)现从这台自动包装机包袋的大批量食盐中,随机抽取




某市举行了一次初一学生调研考试,为了解本次考试学生的数学学科成绩情况,从中抽取部分学生的分数(满分为100分,得分取正整数,抽取学生的分数均在
之内)作为样本(样本容量
)进行统计,按照
的分组方法作出频率分布直方图,并作出了样本分数的茎叶图(茎叶图中仅列出了得分在
的数据].

(Ⅰ)求频率分布直方图中的
的值,并估计学生分数的中位数;
(Ⅱ)字在选取的样本中,从成绩在80分以上(含80分)的学生中随机抽取2名学生,求所抽取的2名学生中恰有一人得分在
内的概率.





(Ⅰ)求频率分布直方图中的

(Ⅱ)字在选取的样本中,从成绩在80分以上(含80分)的学生中随机抽取2名学生,求所抽取的2名学生中恰有一人得分在
