- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 条形统计图
- 折线统计图
- 扇形统计图
- 频率分布表
- + 频率分布直方图
- 绘制频率分布直方图
- 补全频率分布直方图
- 由频率分布直方图计算频率、频数、样本容量、总体容量
- 频率分布直方图的优缺点与适用对象
- 频率分布直方图的实际应用
- 频率分布折线图
- 茎叶图
- 众数
- 中位数
- 平均数
- 极差、方差、标准差
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某公司为改善职工的出行条件,随机抽取
名职工,调查他们的居住地与公司的距离
(单位:千米).若样本数据分组为
,
,
,
,
,
,由数据绘制的分布频率直方图如图所示,则样本中职工居住地与公司的距离不超过
千米的人数为 人.










某商场在五一促销活动中,对5月1日9时至14时的销售额进行统计,其频率分布直方图如图,已知9时至10时的销售额为2.5万元,则11时至12时的销售额为( )


A.6万元 | B.8万元 | C.10万元 | D.12万元 |
某市为加强教师基础素质建设,开展了“每月多读一本书,提高自身修养”的读书活动.设该市参加读书活动的教师平均每人每年读书的本数为x(单位:本),按读书本数分下列四种情况统计:①0~10本;②11~20本;③21~30本;④30本以上.现有10 000名教师参加了此项活动,如图是此次调查中某一项的程序框图,其输出的结果为6 200,则该市参加活动的教师中平均每年读书本数在0~20之间的频率是( )


A.3 800 | B.6 200 | C.0.38 | D.0.62 |
某种产品的质量以其质量指标值来衡量,质量指标值越大表明质量越好,且质量指标值大于或等于
的产品为优质产品.现用两种新配方(分别称为
配方和
配方)做试验,各生产了
件这种产品,并测量了每件产品的质量指标值(都在区间
内),将这些数据分成
组:
,
,
,
,得到如下两个频率分布直方图:

已知这
种配方生产的产品利润
(单位:百元)与其质量指标值
的关系式均为
.
若以上面数据的频率作为概率,分别从用
配方和
配方生产的产品中随机抽取一件,且抽取的这
件产品相互独立,则抽得的这两件产品利润之和为
的概率为( )











已知这




若以上面数据的频率作为概率,分别从用




A.![]() | B.![]() | C.![]() | D.![]() |
某海产品经销商调查发现,该海产品每售出
吨可获利
万元,每积压
吨则亏损
万元.根据往年的数据,得到年需求量的频率分布直方图如图所示,将频率视为概率.

(1)请补齐
上的频率分布直方图,并依据该图估计年需求量的平均数;
(2)今年该经销商欲进货
吨,以
(单位:吨,
)表示今年的年需求量,以
(单位:万元)表示今年销售的利润,试将
表示为
的函数解析式;并求今年的年利润不少于
万元的概率.





(1)请补齐

(2)今年该经销商欲进货







某地区对一种新品种小麦在一块试验田进行试种.从试验田中抽取
株小麦,测量这些小麦的生长指标值,由测量结果得如下频数分布表:

(1)在相应位置上作出这些数据的频率分布直方图;
(2)求这
株小麦生长指标值的样本平均数
和样本方差
(同一组中的数据用该组区间的中点值作代表);
(3)由直方图可以认为,这种小麦的生长指标值
服从正态分布
,其中
近似为样本平均数
,
近似为样本方差
.
①利用该正态分布,求
;
②若从试验田中抽取
株小麦,记
表示这
株小麦中生长指标值位于区间
的小麦株数,利用①的结果,求
.
附:
.
若
,则
,
.

生长指标值分组 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
频数 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |

(1)在相应位置上作出这些数据的频率分布直方图;
(2)求这



(3)由直方图可以认为,这种小麦的生长指标值






①利用该正态分布,求

②若从试验田中抽取





附:

若



某校对高二一班的数学期末考试成绩进行了统计,发现该班学生的分数都在90到140分之间,其频率分布直方图如图所示,若130~140分数段的人数为2,则100~120分数段的人数为( )


A.12 | B.28 | C.32 | D.40 |
从某校随机抽取200名学生,获得了他们一周课外阅读时间(单位:h)的数据,整理得到数据的频数分布表和频率分布直方图(如图).
续 表

(1)从该校随机选取一名学生,试估计这名学生该周课外阅读时间少于12 h的概率;
(2)求频率分布直方图中的a,b的值;
(3)假设同一组中的每个数据可用该组区间的中点值代替,试估计样本中的200名学生该周课外阅读时间的平均数在第几组.
编 号 | 分 组 | 频 数 |
1 | [0,2) | 12 |
2 | [2,4) | 16 |
3 | [4,6) | 34 |
4 | [6,8) | 44 |
续 表
编 号 | 分 组 | 频 数 |
5 | [8,10) | 50 |
6 | [10,12) | 24 |
7 | [12,14) | 12 |
8 | [14,16) | 4 |
9 | [16,18] | 4 |
合计 | | 200 |

(1)从该校随机选取一名学生,试估计这名学生该周课外阅读时间少于12 h的概率;
(2)求频率分布直方图中的a,b的值;
(3)假设同一组中的每个数据可用该组区间的中点值代替,试估计样本中的200名学生该周课外阅读时间的平均数在第几组.
为进一步贯彻落实“十九”大精神,某高校组织了“歌颂祖国,紧跟党走”为主题的党史知识竞赛,从参加竞赛的学生中,随机抽取40名学生,将其成绩分为六段
,
,
,得到如图所示的频率分布直方图.

(1)求图中
的值;
(2)若从竞赛成绩在
与
两个分数段的学生
中随机选取两名学生,设这两名学生的竞赛成绩之差的绝对值不大于
分为事件
,求事件发生的概率.




(1)求图中

(2)若从竞赛成绩在





某校从参加高一年级期末考试的学生中抽出60名学生,将其数学成绩(均为整数)分成六段
后,画出如下部分频率分布直方图.观察图形的信息,回答下列问题:

(1)求第四小组的频率,补全频率分布直方图,并求样本数据的众数,中位数,平均数
和方差
,(同一组中的数据用该区间的中点值作代表);
(2)从被抽取的数学成绩是
分以上(包括
分)的学生中选两人,求他们在同一分数段的概率;
(3)假设从全市参加高一年级期末考试的学生中,任意抽取
个学生,设这四个学生中数学成绩为
分以上(包括
分)的人数为
(以该校学生的成绩的频率估计概率),求
的分布列和数学期望.


(1)求第四小组的频率,补全频率分布直方图,并求样本数据的众数,中位数,平均数


(2)从被抽取的数学成绩是


(3)假设从全市参加高一年级期末考试的学生中,任意抽取




