- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 条形统计图
- 折线统计图
- 扇形统计图
- 频率分布表
- + 频率分布直方图
- 绘制频率分布直方图
- 补全频率分布直方图
- 由频率分布直方图计算频率、频数、样本容量、总体容量
- 频率分布直方图的优缺点与适用对象
- 频率分布直方图的实际应用
- 频率分布折线图
- 茎叶图
- 众数
- 中位数
- 平均数
- 极差、方差、标准差
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
从某校高三年级800名学生中随机抽取50名测量身高,据测量被抽取的学生的身高全部介于155cm和195cm之间,将测量结果按如下方式分成八组:第一组[155,160),第二组[160,165),……,第八组[190.195],下图是按上述分组方法得到的频率分布直方图.

(1)求第七组的频数;
(2)试估计这所学校高三年级800名学生中身高在180cm以上(含180cm)的人数为多少.

(1)求第七组的频数;
(2)试估计这所学校高三年级800名学生中身高在180cm以上(含180cm)的人数为多少.
某商场对某一商品搞活动,已知该商品每一个的进价为3元,销售价为8元,每天售出的第20个及之后的半价出售.该商场统计了近10天这种商品的销量,如图所示,设x(个)为每天商品的销量,y(元)为该商场每天销售这种商品的利润.从日利润不少于96元的几天里任选2天,则选出的这2天日利润都是97元的概率是( )


A.![]() | B.![]() | C.![]() | D.![]() |
某校从参加高二年级期末考试的学生中随机抽取了
名学生,已知这
名学生的历史成绩均不低于60分(满分为100分).现将这
名学生的历史成绩分为四组:
,
,
,
,得到的频率分布直方图如图所示,其中历史成绩在
内的有28名学生,将历史成绩在
内定义为“优秀”,在
内定义为“良好”.

(Ⅰ)求实数
的值及样本容量
;
(Ⅱ)根据历史成绩是否优秀,利用分层抽样的方法从这
名学生中抽取5名,再从这5名学生中随机抽取2名,求这2名学生的历史成绩均优秀的概率;
(Ⅲ)请将
列联表补充完整,并判断是否有
的把握认为历史成绩是否优秀与性别有关?
参考公式及数据:
(其中
).











(Ⅰ)求实数


(Ⅱ)根据历史成绩是否优秀,利用分层抽样的方法从这

(Ⅲ)请将


| 男生 | 女生 | 合计 |
| | | |
优秀 | | | |
良好 | | 20 | |
合计 | | 60 | |
参考公式及数据:


![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
某校从参加高二年级期末考试的学生中随机抽取了
名学生,已知这
名学生的物理成绩均不低于60分(满分为100分).现将这
名学生的物理成绩分为四组:
,
,
,
,得到的频率分布直方图如图所示,其中物理成绩在
内的有28名学生,将物理成绩在
内定义为“优秀”,在
内定义为“良好”.

(1)求实数
的值及样本容量
;
(2)根据物理成绩是否优秀,利用分层抽样的方法从这
名学生中抽取10名,再从这10名学生中随机抽取3名,求这3名学生的物理成绩至少有2名是优秀的概率;
(3)请将
列联表补充完整,并判断是否有
的把握认为物理成绩是否优秀与性别有关?
参考公式及数据:
(其中
).











| 男生 | 女生 | 合计 |
优秀 | | | |
良好 | | 20 | |
合计 | | 60 | |
(1)求实数


(2)根据物理成绩是否优秀,利用分层抽样的方法从这

(3)请将


参考公式及数据:


![]() | 0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
环境问题是当今世界共同关注的问题,我国环保总局根据空气污染指数PM2.5浓度,制定了空气质量标准:
某市政府为了打造美丽城市,节能减排,从2010年开始考察了连续六年11月份的空气污染指数,绘制了频率分布直方图,经过分析研究,决定从2016年11月1日起在空气质量重度污染和严重污染的日子对机动车辆限号出行,即车牌尾号为单号的车辆单号出行,车牌尾号为双号的车辆双号出行(尾号是字母的,前13个视为单号,后13个视为双号).王先生有一辆车,若11月份被限行的概率为0.05.

(1)求频率分布直方图中m的值;
(2)若按分层抽样的方法,从空气质量等级为良与中度污染的天气中抽取6天,再从这6天中随机抽取2天,求至少有一天空气质量是中度污染的概率;
(3)该市环保局为了调查汽车尾气排放对空气质量的影响,对限行两年来的11月份共60天的空气质量进行统计,其结果如下表:
根据限行前6年180天与限行后60天的数据,计算并填写2×2列联表,并回答是否有90%的把握认为空气质量的优良与汽车尾气的排放有关.
参考数据:
参考公式:
,其中
.
空气污染指数 | (0,50] | (50,100] | (100,150] | (150,200] | (200,300] | (300,+∞) |
空气质量等级 | 优 | 良 | 轻度污染 | 中度污染 | 重度污染 | 严重污染 |
某市政府为了打造美丽城市,节能减排,从2010年开始考察了连续六年11月份的空气污染指数,绘制了频率分布直方图,经过分析研究,决定从2016年11月1日起在空气质量重度污染和严重污染的日子对机动车辆限号出行,即车牌尾号为单号的车辆单号出行,车牌尾号为双号的车辆双号出行(尾号是字母的,前13个视为单号,后13个视为双号).王先生有一辆车,若11月份被限行的概率为0.05.

(1)求频率分布直方图中m的值;
(2)若按分层抽样的方法,从空气质量等级为良与中度污染的天气中抽取6天,再从这6天中随机抽取2天,求至少有一天空气质量是中度污染的概率;
(3)该市环保局为了调查汽车尾气排放对空气质量的影响,对限行两年来的11月份共60天的空气质量进行统计,其结果如下表:
空气质量 | 优 | 良 | 轻度污染 | 中度污染 | 重度污染 | 严重污染 |
天数 | 11 | 27 | 11 | 7 | 3 | 1 |
根据限行前6年180天与限行后60天的数据,计算并填写2×2列联表,并回答是否有90%的把握认为空气质量的优良与汽车尾气的排放有关.
| 空气质量优、良 | 空气质量污染 | 总计 |
限行前 | | | |
限行后 | | | |
总计 | | | |
参考数据:
![]() | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
参考公式:


某校为调查高中生在校参加体育活动的时间,随机抽取了
名高中学生进行调查,其中男女各占一半,下面是根据调查结果绘制的学生日均体育锻炼时间的频率分布直方图:

将日均体育锻炼时间不低于
分钟的学生评价为“良好”,已知“良好"评价中有
名女姓,
参考公式:
(1)请将下面的列联表补充完整;
(2)能有多大把握认为“高中生的性别与喜欢体育锻炼”有关?


将日均体育锻炼时间不低于


| 非良好 | 良好 | 合计 |
男生 | | | |
女生 | | | |
合计 | | | |
参考公式:

![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() |
(1)请将下面的列联表补充完整;
(2)能有多大把握认为“高中生的性别与喜欢体育锻炼”有关?
我校举行“两城同创”的知识竞赛答题,高一年级共有1200名学生参加了这次竞赛.为了解竞赛成绩情况,从中抽取了100名学生的成绩进行统计.其中成绩分组区间为
,
,
,
,
,其频率分布直方图如图所示,请你解答下列问题:

(1)求
的值;
(2)若成绩不低于90分的学生就能获奖,问所有参赛学生中获奖的学生约为多少人;
(3)根据频率分布直方图,估计这次平均分(用组中值代替各组数据的平均值).






(1)求

(2)若成绩不低于90分的学生就能获奖,问所有参赛学生中获奖的学生约为多少人;
(3)根据频率分布直方图,估计这次平均分(用组中值代替各组数据的平均值).
已知某市大约有800万网络购物者,某电子商务公司对该市n名网络购物者某年度上半年的消费情况进行了统计,发现消费金额(单位:万元)都在区间[0.5,1.1]内,其频率分布直方图如图所示.

(1)求该市n名网络购物者该年度上半年的消费金额的平均数与中位数(以各区间的中点值代表该区间的均值).
(2)现从前4组中选取18人进行网络购物爱好调查.
(i)求在前4组中各组应该选取的人数;
(ii)在前2组所选取的人中,再随机选2人,求这2人都是来自第二组的概率.

(1)求该市n名网络购物者该年度上半年的消费金额的平均数与中位数(以各区间的中点值代表该区间的均值).
(2)现从前4组中选取18人进行网络购物爱好调查.
(i)求在前4组中各组应该选取的人数;
(ii)在前2组所选取的人中,再随机选2人,求这2人都是来自第二组的概率.
据某市供电公司数据,2019年1月份市新能源汽车充电量约270万度,同比2018年增长
,为了增强新能源汽车的推广运用,政府加大了充电桩等基础设施的投入.现为了了解该城市充电桩等基础设施的使用情况,随机选取了200个驾驶新能源汽车的司机进行问卷调查,根据其满意度评分值(百分制)按照
,
,…,
分成5组,制成如图所示的频率分布直方图.

(1)求图中
的值并估计样本数据的中位数;
(2)已知满意度评分值在
内的男女司机人数比为
,从中随机抽取2人进行座谈,求2人均为女司机的概率.





(1)求图中

(2)已知满意度评分值在

