- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 条形统计图
- 折线统计图
- 扇形统计图
- 频率分布表
- + 频率分布直方图
- 绘制频率分布直方图
- 补全频率分布直方图
- 由频率分布直方图计算频率、频数、样本容量、总体容量
- 频率分布直方图的优缺点与适用对象
- 频率分布直方图的实际应用
- 频率分布折线图
- 茎叶图
- 众数
- 中位数
- 平均数
- 极差、方差、标准差
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
山西省在2019年3月份的高三适应性考试中对数学成绩数据统计显示,全市10000名学生的成绩近似服从正态分布
,现某校随机抽取了50名学生的数学成绩分析,结果这50名学生的成绩全部介于85分到145分之间,现将结果按如下方式分为6组,第一组
,第二组
,…,第六组
,得到如图所示的频率分布直方图:

(1)求全市数学成绩在135分以上的人数;
(2)试由样本频率分布直方图佔计该校数学成绩的平均分数;
(3)若从这50名学生中成绩在125分(含125分)以上的同学中任意抽取3人,该3人在全市前13名的人数记为
,求
的分布列和期望.
附:若
,则
,
,
.





(1)求全市数学成绩在135分以上的人数;
(2)试由样本频率分布直方图佔计该校数学成绩的平均分数;
(3)若从这50名学生中成绩在125分(含125分)以上的同学中任意抽取3人,该3人在全市前13名的人数记为


附:若




从某小学随机抽取100名学生,将他们的身高数据(单位:厘米)按
,
,
,
,
分组,绘制成频率分布直方图(如图).从身高在
,
,
三组内的学生中,用分层抽样的方法抽取18人参加一项活动,则从身高在
内的学生中选取的人数应为( )











A.3 | B.4 | C.5 | D.6 |
从某校
名学生中随机抽取若干学生,获得了他们一天课外阅读时间(单位:分钟)的数据,整理得到频率分布直方图如下.则估计该校学生中每天阅读时间在
的学生人数为_____.



高二数学期中测试中,为了了解学生的考试情况,从中抽取了
个学生的成绩(满分为100分)进行统计.按照[50,60), [60,70), [70,80), [80,90), [90,100]的分组作出频率分布直方图,并作出样本分数的茎叶图(图中仅列出得分在[50,60), [90,100]的数据).

(1)求样本容量
和频率分布直方图中
的值;
(2)在选取的样本中,从成绩是80分以上(含80分)的同学中随机抽取3名参加志愿者活动,所抽取的3名同学中至少有一名成绩在[90,100]内的概率..


(1)求样本容量


(2)在选取的样本中,从成绩是80分以上(含80分)的同学中随机抽取3名参加志愿者活动,所抽取的3名同学中至少有一名成绩在[90,100]内的概率..
某校为了解高一新生对文理科的选择,对1 000名高一新生发放文理科选择调查表,统计知,有600名学生选择理科,400名学生选择文科.分别从选择理科和文科的学生随机各抽取20名学生的数学成绩得如下累计表:
(1)从统计表分析,比较选择文理科学生的数学平均分及学生选择文理科的情况,并绘制理科数学成绩的频率分布直方图.

(2)根据你绘制的频率分布直方图,估计意向选择理科的学生的数学成绩的中位数与平均分.
分数段 | 理科人数 | 文科人数 |
![]() | | ![]() |
![]() | ![]() | ![]() |
![]() | ![]() | ![]() |
![]() | 正![]() | 正 |
![]() | 正![]() | ![]() |
![]() | ![]() | ![]() |
(1)从统计表分析,比较选择文理科学生的数学平均分及学生选择文理科的情况,并绘制理科数学成绩的频率分布直方图.

(2)根据你绘制的频率分布直方图,估计意向选择理科的学生的数学成绩的中位数与平均分.
某班50位学生期中考试数学成绩的频率分布直方图如图所示,其中成绩分组区间是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]

(Ⅰ)求图中
的值,并估计该班期中考试数学成绩的众数;
(Ⅱ)从成绩不低于90分的学生和成绩低于50分的学生中随机选取2人,求这2人成绩均不低于90分的概率.

(Ⅰ)求图中

(Ⅱ)从成绩不低于90分的学生和成绩低于50分的学生中随机选取2人,求这2人成绩均不低于90分的概率.
某市有1200名中学生参加了去年春季的数学学业水平考试,从中随机抽取了100人的考试成绩统计得到如图所示的频率分布直方图,据此可以估计这1200名学生中考试成绩超过80分的人数为___________人。

某市为增强市民的环境保护意识,面向全市征召义务宣传志愿者.现从符合条件的志愿者中 随机抽取
名按年龄分组:第
组
,第
组
,第
组
,第
组
,第
组
,得到的频率分布直方图如图所示.

(1)若从第
,
,
组中用分层抽样的方法抽取
名志愿者参广场的宣传活动,应从第
,
,
组各抽取多少名志愿者?
(2)在(1)的条件下,该市决定在这
名志愿者中随机抽取
名志愿者介绍宣传经验,求第
组志愿者有被抽中的概率.












(1)若从第







(2)在(1)的条件下,该市决定在这



某中学为了了解全校学生的阅读情况,在全校采用随机抽样的方法抽取一个样本进行问卷调查,并将他们在一个月内去图书馆的次数进行了统计,将学生去图书馆的次数分为5组:
制作了如图所示的频率分布表,则抽样总人数为_______.


某校全体教师年龄的频率分布表如表1所示,其中男教师年龄的频率分布直方图如图2所示.已知该校年龄在
岁以下的教师中,男女教师的人数相等.
表1:


(1)求图2中
的值;
(2)若按性别分层抽样,随机抽取16人参加技能比赛活动,求男女教师抽取的人数;
(3)若从年龄在
的教师中随机抽取2人,参加重阳节活动,求至少有1名女教师的概率.

表1:


(1)求图2中

(2)若按性别分层抽样,随机抽取16人参加技能比赛活动,求男女教师抽取的人数;
(3)若从年龄在
