- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 条形统计图
- 折线统计图
- 扇形统计图
- 频率分布表
- + 频率分布直方图
- 绘制频率分布直方图
- 补全频率分布直方图
- 由频率分布直方图计算频率、频数、样本容量、总体容量
- 频率分布直方图的优缺点与适用对象
- 频率分布直方图的实际应用
- 频率分布折线图
- 茎叶图
- 众数
- 中位数
- 平均数
- 极差、方差、标准差
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某快餐连锁店招聘外卖骑手,该快餐连锁店提供了两种日工资方案:方案(1)规定每日底薪50元,快递业务每完成一单提成3元;方案(2)规定每日底薪100元,快递业务的前44单没有提成,从第45单开始,每完成一单提成5元.该快餐连锁店记录了每天骑手的人均业务量.现随机抽取100天的数据,将样本数据分为[ 25,35),[35,45),[45,55),[55,65),[65,75),[75,85),[85,95]七组,整理得到如图所示的频率分布直方图。

(1)随机选取一天,估计这一天该连锁店的骑手的人均日快递业务量不少于65单的概率;
(2)若骑手甲、乙选择了日工资方案(1),丙、丁选择了日工资方案(2).现从上述4名骑手中随机选取2人,求至少有1名骑手选择方案(1)的概率;

(1)随机选取一天,估计这一天该连锁店的骑手的人均日快递业务量不少于65单的概率;
(2)若骑手甲、乙选择了日工资方案(1),丙、丁选择了日工资方案(2).现从上述4名骑手中随机选取2人,求至少有1名骑手选择方案(1)的概率;
海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg), 其频率分布直方图如下:

(1)记A表示事件“旧养殖法的箱产量低于50kg”,估计A的概率;
(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:
(3)根据箱产量的频率分布直方图,对两种养殖方法的优劣进行较。



(1)记A表示事件“旧养殖法的箱产量低于50kg”,估计A的概率;
(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:
| 箱产量<50kg | 箱产量≥50kg |
旧养殖法 | | |
新养殖法 | | |
(3)根据箱产量的频率分布直方图,对两种养殖方法的优劣进行较。
附:
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |


4月23日是“世界读书日”,某中学在此期间开展了一系列的读书教育活动,为了解本校学生课外阅读情况,学校随机抽取了100名学生对其课外阅读时间进行调查,下面是根据调查结果绘制的学生日均课外阅读时间(单位:分钟)的频率分布直方图,若将日均课外阅读时间不低于60分钟的学生称为“读书谜”,低于60分钟的学生称为“非读书谜”

(1)求
的值并估计全校3000名学生中读书谜大概有多少?(将频率视为概率)
(2)根据已知条件完成下面2×2的列联表,并据此判断是否有99%的把握认为“读书谜”与性别有关?
附:
.

(1)求

(2)根据已知条件完成下面2×2的列联表,并据此判断是否有99%的把握认为“读书谜”与性别有关?
| 非读书迷 | 读书迷 | 合计 |
男 | | 15 | |
女 | | | 45 |
合计 | | | |
附:

![]() | 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
![]() | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
由甲、乙、丙三个人组成的团队参加某项闯关游戏,第一关解密码锁,3个人依次进行,每人必须在1分钟内完成,否则派下一个人.3个人中只要有一人能解开密码锁,则该团队进入下一关,否则淘汰出局.根据以往100次的测试,分别获得甲、乙解开密码锁所需时间的频率分布直方图.

(1)若甲解开密码锁所需时间的中位数为47,求a、b的值,并分别求出甲、乙在1分钟内解开密码锁的频率;
(2)若以解开密码锁所需时间位于各区间的频率代替解开密码锁所需时间位于该区间的概率,并且丙在1分钟内解开密码锁的概率为0.5,各人是否解开密码锁相互独立.
①求该团队能进入下一关的概率;
②该团队以怎样的先后顺序派出人员,可使所需派出的人员数目X的数学期望达到最小,并说明理由.

(1)若甲解开密码锁所需时间的中位数为47,求a、b的值,并分别求出甲、乙在1分钟内解开密码锁的频率;
(2)若以解开密码锁所需时间位于各区间的频率代替解开密码锁所需时间位于该区间的概率,并且丙在1分钟内解开密码锁的概率为0.5,各人是否解开密码锁相互独立.
①求该团队能进入下一关的概率;
②该团队以怎样的先后顺序派出人员,可使所需派出的人员数目X的数学期望达到最小,并说明理由.
对某一中学同年龄的
名男生的身高进行了测量,结果如下:

人;
人;
人;
人;
人;
人
(1)列出频率分布表;
(2)画出频率分布直方图;
(3)估计这
名男生的身高的众数和中位数。(只要求结果不需要过程,中位数保留
位小数)













(1)列出频率分布表;
(2)画出频率分布直方图;
(3)估计这


2018年11月21日,意大利奢侈品牌“
”在广告中涉嫌辱华,中国明星纷纷站出来抵制该品牌,随后京东、天猫、唯品会等中国电商平台全线下架了该品牌商品,当天有大量网友关注此事件,某网上论坛从关注此事件跟帖中,随机抽取了100名网友进行调查统计,先分别统计他们在跟帖中的留言条数,再把网友人数按留言条数分成6组:[0,10),[10,20),[20,30),[30,40),[40,50),[50,60],得到如图所示的频率分布直方图;并将其中留言不低于40条的规定为“强烈关注”,否则为“一般关注”,对这100名网友进一步统计得到列联表的部分数据如表.

(1)根据如图所示的频率分布直方图,求网友留言条数的中位数;
(2)在答题卡上补全
列联表中数据;
(3)判断能否有
的把握认为网友对此事件是否为“强烈关注”与性别有关?
参考公式及数据:


(1)根据如图所示的频率分布直方图,求网友留言条数的中位数;
(2)在答题卡上补全

(3)判断能否有

| 一般关注 | 强烈关注 | 合计 |
男 | | | 45 |
女 | | 10 | 55 |
合计 | | | 100 |
参考公式及数据:

![]() | 0.05 | 0.025 | 0.010 | 0.005 |
![]() | 3.841 | 5.024 | 6.635 | 7.879 |
一个社会调查机构就某地居民收入调查了10000人,并根据所得数据画出了如图所示的频率分布直方图,现要从这10000人中再用分层抽样的方法抽出100人作进一步调查,则月收入在
(元)内的应抽出___ 人.


某工厂甲、乙两条相互独立的生产线生产同款产品,在产量一样的情况下通过日常监控得知,甲、乙两条生产线生产的产品为合格品的概率分别为
相
.

(1)若从甲、乙两条生产线上各抽检一件产品。至少有一件合格的概率为
.求
的值:
(2)在(1)的前提下,假设每生产一件不合格的产品,甲、乙两条生产钱损失分别为
元和
元,若从两条生产线上各随机抽检
件产品。估计哪条生产线的损失较多?
(3)若产品按照一、二、三等级分类后销售,每件可分别获利
元,
元,
元,现从甲、乙生产线各随机抽取
件进行检测,统计结果如图所示。用样本的频率分布估计总体分布,记该工厂生产一件产品的利润为
,求
的分布列并估计该厂产量为
件时利润的期望值.




(1)若从甲、乙两条生产线上各抽检一件产品。至少有一件合格的概率为


(2)在(1)的前提下,假设每生产一件不合格的产品,甲、乙两条生产钱损失分别为



(3)若产品按照一、二、三等级分类后销售,每件可分别获利







某手机代工厂对生产线进行升级改造评估,随机抽取了生产线改造前、后100个生产班次的产量进行对比,改造前、后手机产量(单位:百部)的频率分布直方图如下:

(1)设改造前、后手机产量相互独立,记
表示事件:“改造前手机产量低于5000部,改造后手机产量不低于5000部”,视频率为概率,求事件
的概率;
(2)填写下面
列联表,并根据列联表判断是否有
的把握认为手机产量与生产线升级改造有关:
(3)根据手机产量的频率分布直方图,求改造后手机产量的中位数的估计值(精确到0.01).
参考公式:随机变量
的观测值计算公式:
,其中
.临界值表:

(1)设改造前、后手机产量相互独立,记


(2)填写下面


| 手机产量![]() | 手机产量![]() |
改造前 | | |
改造后 | | |
(3)根据手机产量的频率分布直方图,求改造后手机产量的中位数的估计值(精确到0.01).
参考公式:随机变量



![]() | 0.100 | 0.050 | 0.010 | 0.001 |
![]() | 2.706 | 3.841 | 6.635 | 10.828 |
某手机代工厂对生产线进行升级改造评估,随机抽取了生产线改造前、后100个生产班次的产量进行对比,改造前、后手机产量(单位:百部)的频率分布直方图如下:

(1)记
表示事件:“改造前手机产量低于5000部”,视频率为概率,求事件
的概率;
(2)填写下面
列联表,并根据列联表判断是否有
的把握认为手机产量与生产线升级改造有关:
(3)根据手机产量的频率分布直方图,求改造后手机产量的中位数的估计值(精确到0.01).
参考公式:随机变量
的观测值计算公式:
,其中
.
临界值表:

(1)记


(2)填写下面


| 手机产量![]() | 手机产量![]() |
改造前 | | |
改造后 | | |
(3)根据手机产量的频率分布直方图,求改造后手机产量的中位数的估计值(精确到0.01).
参考公式:随机变量



临界值表:
![]() | 0.100 | 0.050 | 0.010 | 0.001 |
![]() | 2.706 | 3.841 | 6.635 | 10.828 |