- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 条形统计图
- 折线统计图
- 扇形统计图
- 频率分布表
- + 频率分布直方图
- 绘制频率分布直方图
- 补全频率分布直方图
- 由频率分布直方图计算频率、频数、样本容量、总体容量
- 频率分布直方图的优缺点与适用对象
- 频率分布直方图的实际应用
- 频率分布折线图
- 茎叶图
- 众数
- 中位数
- 平均数
- 极差、方差、标准差
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某教师为了分析所任教班级某次考试的成绩,将全班同学的成绩做出了频数与频率的统计表和频率分布直方图.

(1)求表中
及图中
的值;
(2)该教师从这次考试成绩低于
分的学生中随机抽取
人进行面批,设
表示所抽取学生中成绩低于
分的人数,求随机变量
的分布列和数学期望.


(1)求表中


(2)该教师从这次考试成绩低于





某中学高三年级有学生500人,其中男生300人,女生200人.为了研究学生的数学成绩是否与性别有关,采用分层抽样的方法,从中抽取了100名学生,统计了他们期中考试的数学分数,然后按照性别分为男、女两组,再将两组的分数分成5组:
分别加以统计,得到如图所示的频率分布直方图.

(I)从样本分数小于110分的学生中随机抽取2人,求两人恰为一男一女的概率;
(II)若规定分数不小于130分的学生为“数学尖子生”,请你根据已知条件完成2×2列联表,并判断是否有90%的把握认为“数学尖子生与性别有关”?
附表:


(I)从样本分数小于110分的学生中随机抽取2人,求两人恰为一男一女的概率;
(II)若规定分数不小于130分的学生为“数学尖子生”,请你根据已知条件完成2×2列联表,并判断是否有90%的把握认为“数学尖子生与性别有关”?

海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了
个网箱,测量各箱水产品的产量(单位:
),其频率分布直方图如下:

(1)网箱产量不低于
为“理想网箱”,填写下面列联表,并根据列联表判断是否有
的把握认为“理想网箱”的数目与养殖方法有关:
(2)已知旧养殖法
个网箱需要成本
元,新养殖法
个网箱需要增加成本
元,该水产品的市场价格为
元/
,根据箱产量的频率分布直方图(说明:同一组中的数据用该组区间的中间值作代表),采用哪种养殖法,请给养殖户一个较好的建议,并说明理由.
附参考公式及参考数据:




(1)网箱产量不低于


| 箱产量![]() | 箱产量![]() | 合计 |
旧养殖法 | | | |
新养殖法 | | | |
合计 | | | |
(2)已知旧养殖法






附参考公式及参考数据:
![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() |

为了调查居民对城市共享单车的满意度,随机选取了100人进行问卷调查,并将问卷中的100人根据其满意度评分值按照
分为5组,得到号如图所示的频率分布直方图.

(Ⅰ)求满意度分值不低于70分的人数.
(Ⅱ)已知满意度分值在
内的男性与女性的比为3:4,为提高共享单车的满意度,现从满意度分值在
的人中随机抽取2人进行座谈,求这2人中只有一位男性的概率.


(Ⅰ)求满意度分值不低于70分的人数.
(Ⅱ)已知满意度分值在


衡阳市为增强市民的环境保护意识,面向全市征召义务宣传志愿者,现从符合条件的志愿者中随机抽取100名后按年龄分组:第1组
,第2组
,第3组
,第4组
,第5组
,得到的频率分布直方图如图所示.

(1)若从第3,4,5组中用分层抽样的方法抽取6名志愿者参加广场的宣传活动,则应从第3,4,5组各抽取多少名志愿者?
(2)在(1)的条件下,该市决定在第3,4组的志愿者中随机抽取2名志愿者介绍宣传经验,求第4组至少有一名志愿者被抽中的概率.






(1)若从第3,4,5组中用分层抽样的方法抽取6名志愿者参加广场的宣传活动,则应从第3,4,5组各抽取多少名志愿者?
(2)在(1)的条件下,该市决定在第3,4组的志愿者中随机抽取2名志愿者介绍宣传经验,求第4组至少有一名志愿者被抽中的概率.
中央政府为了应对因人口老龄化而造成的劳动力短缺等问题,拟定出台“延迟退休年龄政策”.为了了解人们对“延迟退休年龄政策”的态度,责成人社部进行调研.人社部从网上年龄在15~65岁的人群中随机调查100人,调查数据的频率分布直方图如图所示, 支持“延迟退休年龄政策”的人数与年龄的统计结果如表:

(I)由以上统计数据填写下面的
列联表;
(II)通过计算判断是否有
的把握认为以45岁为分界点的不同人群对“延迟退休年龄政策”的态度有差异.
参考公式:

年龄(岁) | ![]() | ![]() | ![]() | ![]() | ![]() |
支持“延迟退休年龄政策”人数 | 15 | 5 | 15 | 28 | 17 |
(I)由以上统计数据填写下面的

| 年龄低于45岁的人数 | 年龄不低于45岁的人数 | 总计 |
支持 | | | |
不支持 | | | |
总计 | | | |
(II)通过计算判断是否有

![]() | 0.100 | 0.050 | 0.010 | 0.001 |
![]() | 2.706 | 3.841 | 6.635 | 10.828 |
参考公式:

某校高二某班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏,其可见部分如图所示.据此解答如下问题:

(1)计算频率分布直方图中
间的矩形的高;
(2)根据茎叶图和频率分布直方图估计这次测试的平均分.

(1)计算频率分布直方图中

(2)根据茎叶图和频率分布直方图估计这次测试的平均分.
某制造商
月生产了一批乒乓球,随机抽样
个进行检查,测得每个球的直径(单位:mm),将数据分组如下表

(1)请在上表中补充完成频率分布表(结果保留两位小数),并在上图中画出频率分布直方图;
(2)统计方法中,同一组数据常用该组区间的中点值(例如区间
的中点值是
作为代表.据此估计这批乒乓球直径的平均值(结果保留两位小数).


分组 | 频数 | 频率 |
![]() | 10 | |
![]() | 20 | |
![]() | 50 | |
![]() | 20 | |
合计 | 100 | |

(1)请在上表中补充完成频率分布表(结果保留两位小数),并在上图中画出频率分布直方图;
(2)统计方法中,同一组数据常用该组区间的中点值(例如区间


手机厂商推出一款6寸大屏手机,现对500名该手机使用者(200名女性,300名男性)进行调查,对手机进行评分,评分的频数分布表如下:

(1)完成下列频率分布直方图,并比较女性用户和男性用户评分的波动大小(不计算具体值,给出结论即可);
(2)把评分不低于70分的用户称为“评分良好用户”,完成下列列联表,并判断能否有
的把握认为“评分良好用户”与性别有关?
参考附表:
参考公式
,其中

女性用户 | 分值区间 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
频数 | 20 | 40 | 80 | 50 | 10 | |
男性用户 | 分值区间 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
频数 | 45 | 75 | 90 | 60 | 30 |
(1)完成下列频率分布直方图,并比较女性用户和男性用户评分的波动大小(不计算具体值,给出结论即可);
(2)把评分不低于70分的用户称为“评分良好用户”,完成下列列联表,并判断能否有

| 女性用户 | 男性用户 | 合计 |
“认可”手机 | | | |
“不认可”手机 | | | |
合计 | | | |
参考附表:
![]() | ![]() | ![]() | ![]() | ![]() |
![]() | ![]() | ![]() | ![]() | ![]() |
参考公式

