- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 条形统计图
- 折线统计图
- 扇形统计图
- 频率分布表
- + 频率分布直方图
- 绘制频率分布直方图
- 补全频率分布直方图
- 由频率分布直方图计算频率、频数、样本容量、总体容量
- 频率分布直方图的优缺点与适用对象
- 频率分布直方图的实际应用
- 频率分布折线图
- 茎叶图
- 众数
- 中位数
- 平均数
- 极差、方差、标准差
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值.经数据处理后得到该样本的频率分布直方图,其中质量指标值不大于1.50的茎叶图如图所示,以这100件产品的质量指标值在各区间内的频率代替相应区间的概率.

(1)求图中
,
,
的值;
(2)估计这种产品质量指标值的平均数及方差(说明:①同一组中的数据用该组区间的中点值作代表;②方差的计算只需列式正确);
(3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于1.50的产品至少要占全部产品的
”的规定?

(1)求图中



(2)估计这种产品质量指标值的平均数及方差(说明:①同一组中的数据用该组区间的中点值作代表;②方差的计算只需列式正确);
(3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于1.50的产品至少要占全部产品的

新个税法于2019年1月1日进行实施.为了调查国企员工对新个税法的满意程度,研究人员在
地各个国企中随机抽取了1000名员工进行调查,并将满意程度以分数的形式统计成如下的频率分布直方图,其中
.

(1)求
的值并估计被调查的员工的满意程度的中位数;(计算结果保留两位小数)
(2)若按照分层抽样从
,
中随机抽取8人,再从这8人中随机抽取2人,求至少有1人的分数在
的概率.



(1)求

(2)若按照分层抽样从



为了调查煤矿公司员工的饮食习惯与月收入之间的关系,随机抽取了30名员工,并制作了这30人的月平均收入的频率分布直方图和饮食指数表(说明:图中饮食指数低于70的人,饮食以蔬菜为主;饮食指数高于70的人,饮食以肉类为主).其中月收入4000元以上员工中有11人饮食指数高于70.

(Ⅰ)是否有95%的把握认为饮食习惯与月收入有关系?若有请说明理由,若没有,说明理由并分析原因;
(Ⅱ)以样本中的频率作为概率,从该公司所有主食蔬菜的员工中随机抽取3人,这3人中月收入4000元以上的人数为
,求
的分布列与期望;
(Ⅲ)经调查该煤矿公司若干户家庭的年收入
(万元)和年饮食支出
(万元)具有线性相关关系,并得到
关于
的回归直线方程:
.若该公司一个员工与其妻子的月收入恰好都为这30人的月平均收入(该家庭只有两人收入),估计该家庭的年饮食支出费用.
附:
.

20 | 21 | 21 | 25 | 32 | 33 |
36 | 37 | 42 | 43 | 44 | 45 |
45 | 58 | 58 | 59 | 61 | 66 |
74 | 75 | 76 | 77 | 77 | 78 |
78 | 82 | 83 | 85 | 86 | 90 |
(Ⅰ)是否有95%的把握认为饮食习惯与月收入有关系?若有请说明理由,若没有,说明理由并分析原因;
(Ⅱ)以样本中的频率作为概率,从该公司所有主食蔬菜的员工中随机抽取3人,这3人中月收入4000元以上的人数为


(Ⅲ)经调查该煤矿公司若干户家庭的年收入





附:

![]() | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
![]() | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
某家庭记录了未使用节水龙头
天的日用水量数据(单位:
)和使用了节水龙头
天的日用水量数据,得到频数分布表如下:
未使用节水龙头
天的日用水量频数分布表
使用了节水龙头
天的日用水量频数分布表
(1)在答题卡上作出使用了节水龙头
天的日用水量数据的频率分布直方图:

(2)估计该家庭使用节水龙头后,日用水量小于
的概率;
(3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按
天计算,同一组中的数据以这组数据所在区间中点的值作代表.)



未使用节水龙头

日用水量 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
频数 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
使用了节水龙头

日用水量 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
频数 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
(1)在答题卡上作出使用了节水龙头


(2)估计该家庭使用节水龙头后,日用水量小于

(3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按

学校为了调查学生在课外读物方面的支出情况,抽出了一个容量为n且支出在[20,60]元的样本,其频率分布直方图如图所示,其中支出在[50,60]元的同学有30人,则n的值为_____.











(1)求选取的市民年龄在

(2)若从第3,4组用分层抽样的方法选取5名市民进行座谈,再从中选取2人参与


某市组织高三全体学生参加计算机操作比赛,等级分为1至10分,随机调阅了
、
两所学校各60名学生的成绩,得到样本数据如下:

(1)计算两校样本数据的均值和方差,并根据所得数据进行比较.
(2)从
校样本数据成绩分别为7分、8分和9分的学生中按分层抽样方法抽取6人,若从抽取的6人中任选2人参加更高一级的比赛,求这2人成绩之和大于或等于15的概率.



(1)计算两校样本数据的均值和方差,并根据所得数据进行比较.
(2)从

从某校期中考试数学试卷中,抽取样本,考察成绩分布,将样本分成5组,绘成频率分布直方图,图中各小组的长方形面积之比从左至右依次为1:3:6:4:2,第一组的频数是4.

(1)求样本容量及各组对应的频率;
(2)根据频率分布直方图估计成绩的平均分和中位数(结果保留两位小数).

(1)求样本容量及各组对应的频率;
(2)根据频率分布直方图估计成绩的平均分和中位数(结果保留两位小数).
在样本的频率分布直方图中,共有9个小长方形,若中间一个长方形的面积等于其他8个小长方形面积的和的
,且样本容量为200,则中间一组的频数为

A.0.2 | B.0.25 | C.40 | D.50 |
高一某研究性学习小组随机抽取了100名年龄在10岁到60岁的市民进行问卷调查,并制作了频率分布直方图(如图),从图中数据可知
__,现从上述年龄在20岁到50岁的市民中按年龄段采用分层抽样的方法抽取30人,则在
年龄段抽取的人数应为__


