- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 抛物线中的直线过定点问题
- 抛物线中存在定点满足某条件问题
- + 抛物线中的定值问题
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知抛物线的顶点为原点,关于
轴对称,且过点
(1)求抛物线的方程
(2)已知
,若直线
与抛物线交于
两点,记直线
的斜率分别为
,求证:
为定值.


(1)求抛物线的方程
(2)已知






已知抛物线
:
(
),过点
的直线
与抛物线
相交于
,
两点,
为坐标原点,且
.
(1)求抛物线
的方程;
(2)点
坐标为
,直线
,
的斜率分别
,
,求证:
为定值.










(1)求抛物线

(2)点







已知抛物线
:
上横坐标为4的点到焦点的距离为5.

(1)求抛物线
的方程;
(2)设直线
与抛物线
交于两点
、
,且
,
是弦
中点,过
作平行于
轴的直线交抛物线
于点
,得到
,再分别过弦
、
的中点作平行于
轴的直线依次交抛物线
于点
、
,得到
和
,按此方法继续下去,解决下列问题:
①求证:
;
②计算
的面积
;
③根据
的面积
的计算结果,写出
、
的面积,请设计一种求抛物线
与线段
所围成封闭图形面积的方法,并求此封闭图形的面积.



(1)求抛物线

(2)设直线




















①求证:

②计算


③根据






已知抛物线C:x2=2py(p>0)的焦点为F,直线2x-y+2=0交抛物线C于A,B两点,P是线段AB的中点,过P作x轴的垂线交抛物线C于点Q.
(I)D是抛物线C上的动点,点E(-1,3),若直线AB过焦点F,求|DF|+|DE|的最小值;
(II)是否存在实数p,使
?若存在,求出p的值;若不存在,说明理由.
(I)D是抛物线C上的动点,点E(-1,3),若直线AB过焦点F,求|DF|+|DE|的最小值;
(II)是否存在实数p,使

已知椭圆
内有圆
,如果圆的切线与椭圆交A、B两点,且满足
(其中
为坐标原点).
(1)求证:
为定值;
(2)若
达到最小值,求此时的椭圆方程;
(3)在满足条件(2)的椭圆上是否存在点P,使得从P向圆所引的两条切线互相垂直,如果存在,求出点的坐标,如果不存在,说明理由.




(1)求证:

(2)若

(3)在满足条件(2)的椭圆上是否存在点P,使得从P向圆所引的两条切线互相垂直,如果存在,求出点的坐标,如果不存在,说明理由.
如图,曲线
是以原点O为中心、
为焦点的椭圆的一部分,曲线
是以O为顶点、
为焦点的抛物线的一部分,A是曲线
和
的交点且
为钝角,若
,
.

(1)求曲线
和
的方程;
(2)过
作一条与
轴不垂直的直线,分别与曲线
依次交于B、C、D、E四点,若G为CD中点、H为BE中点,问
是否为定值?若是求出定值;若不是说明理由.










(1)求曲线


(2)过




如图,
为椭圆
的下顶点.过
的直线
交抛物线
于
,
两点,
是
的中点.

(1)求证:点
的纵坐标是定值;
(2)过点
作与直线
倾斜角互补的直线
交椭圆于
,
两点.求
的值,使得
的面积最大.










(1)求证:点

(2)过点







已知点
到抛物线
准线的距离为2.
(Ⅰ)求
的方程及焦点
的坐标;
(Ⅱ)设点
关于原点
的对称点为点
,过点
作不经过点
的直线与
交于两点
,求直线
与
的斜率之积.


(Ⅰ)求


(Ⅱ)设点








