刷题首页
题库
高中数学
题干
如图,曲线
是以原点
O
为中心、
为焦点的椭圆的一部分,曲线
是以
O
为顶点、
为焦点的抛物线的一部分,
A
是曲线
和
的交点且
为钝角,若
,
.
(1)求曲线
和
的方程;
(2)过
作一条与
轴不垂直的直线,分别与曲线
依次交于
B、C、D、E
四点,若
G
为
CD
中点、
H
为
BE
中点,问
是否为定值?若是求出定值;若不是说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2019-01-30 03:32:41
答案(点此获取答案解析)
同类题1
已知椭圆
的离心率为
,
为椭圆的左、右焦点,过右焦点
的直线与椭圆交于
两点,且
的周长为
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)若点A是第一象限内椭圆上一点,且在
轴上的正投影为右焦点
,过点
作直线
分别交椭圆于
两点,当直线
的倾斜角互补时,试问:直线
的斜率是否为定值;若是,请求出其定值;否则,请说明理由.
同类题2
在平面直角坐标系
xOy
中,椭圆
C
:
+
=1(
a
>
b
>0)的离心率为
,椭圆上动点
P
到一个焦点的距离的最小值为3(
-1).
(1) 求椭圆
C
的标准方程;
(2) 已知过点
M
(0,-1)的动直线
l
与椭圆
C
交于
A
,
B
两点,试判断以线段
AB
为直径的圆是否恒过定点,并说明理由.
同类题3
设椭圆
的右焦点为
,直线
与
轴交于点
,假设
(其中
为坐标原点)
(1)求椭圆
的方程;
(2)设
是椭圆
上的任意一点,
为圆
的任意一条直径(
、
为直径的两个端点),求
的最大值
同类题4
在平面直角坐标系
中,已知椭圆
C
:
,且椭圆
C
上一点
N
到点
Q
(0,3)的距离最大值为4,过点
M
(3,0)的直线交椭圆
C
于点
A
、
A.
(1)求椭圆
C
的方程;
(2)设
P
为椭圆上一点,且满足
(O为坐标原点),当
时,求实数
t
的取值范围.
同类题5
已知椭圆
:
的离心率为
,以椭圆长、短轴四个端点为顶点为四边形的面积为
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)如图所示,记椭圆的左、右顶点分别为
、
,当动点
在定直线
上运动时,直线
分别交椭圆于两点
、
,求四边形
面积的最大值.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
根据定义求抛物线的标准方程