刷题首页
题库
高中数学
题干
如图,曲线
是以原点
O
为中心、
为焦点的椭圆的一部分,曲线
是以
O
为顶点、
为焦点的抛物线的一部分,
A
是曲线
和
的交点且
为钝角,若
,
.
(1)求曲线
和
的方程;
(2)过
作一条与
轴不垂直的直线,分别与曲线
依次交于
B、C、D、E
四点,若
G
为
CD
中点、
H
为
BE
中点,问
是否为定值?若是求出定值;若不是说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2019-01-30 03:32:41
答案(点此获取答案解析)
同类题1
椭圆
的一个焦点是
,那么
( )
A.5
B.25
C.-5
D.-25
同类题2
设
是焦距为2的椭圆
上一点,
是椭圆
的左、右顶点,直线
与
的斜率分别为
,且
.
(1)求椭圆
的方程;
(2)已知椭圆
上点
处切线方程为
,若
是直线
上任意一点,从
向椭圆
作切线,切点分别为
,求证直线
恒过定点,并求出该定点坐标.
同类题3
已知椭圆
:
,设直线
:
是椭圆
的一条切线,两点
和
在切线
上.
(1)若
,
,
,
中恰有三点在椭圆
上,求椭圆
的方程;
(2)在(1)的条件下,证明:当
,
变化时,以
为直径的圆恒过定点,并求出定点坐标.
同类题4
已知椭圆C:
(a>b>0)的离心率为
,左、右焦点分别是F
1
,F
2
,点P为椭圆C上任意一点,且△PF
1
F
2
面积的最大值为
.
(1)求椭圆C的方程;
(2)过F
2
作垂直于x轴的直线l交椭圆于A,B两点(点A在第一象限),M,N是椭圆上位于直线l两侧的动点,若∠MAB=∠NAB,求证:直线MN的斜率为定值.
同类题5
已知椭圆
的右焦点为
,
为短轴的一个端点且
(其中
为坐标原点).
(1)求椭圆的方程;
(2)若
、
分别是椭圆长轴的左右端点,动点
满足
,连接
,交椭圆于点
,试问
轴上是否存在异于点
的定点
,使得以
为直径的圆恒过直线
、
的交点,若存在,求出点
的坐标;若不存在,说明理由.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
根据定义求抛物线的标准方程