- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 利用焦半径公式解决直线与抛物线交点问题
- 求直线与抛物线相交所得弦的弦长
- + 抛物线中的三角形面积问题
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,
是抛物线
的焦点,过点
且与坐标轴不垂直的直线交抛物线于
、
两点,交抛物线的准线于点
,其中
,
.过点
作
轴的垂线交抛物线于点
,直线
交抛物线于点
.

(1)求
的值;
(2)求四边形
的面积
的最小值.














(1)求

(2)求四边形


已知抛物线
的焦点为F,过点F的直线与抛物线C相交于P,Q两点,与y轴交于A点,若
, O为坐标原点,则
OPQ的面积为( )



A.![]() | B.![]() | C.![]() | D.4 |
如图,过抛物线
上一点
,作两条直线分别交抛物线于
,
,当
与
的斜率存在且倾斜角互补时:

(Ⅰ)求
的值;
(Ⅱ)若直线
在
轴上的截距
时,求
面积
的最大值.







(Ⅰ)求

(Ⅱ)若直线





已知F为抛物线y2=x的焦点,点A,B在该抛物线上且位于x轴的两侧,
(其中O为坐标原点),则△ABO与△AFO面积之和的最小值是________.


如图,设抛物线
的准线
与
轴交于椭圆
的右焦点
,
为左焦点,椭圆的离心率为
,抛物线
与椭圆
交于
轴上方一点
,连接
并延长
交
于点
为
上一动点,且在
之间移动.
(1)当
取最小值时,求
和
的方程;
(2)若
的边长恰好是三个连接的自然数,求
面积的最大值.

















(1)当



(2)若



已知抛物线
的焦点为
,准线为
,点
,
在
上的射影为
,且
是边长为
的正三角形.
(1)求
;
(2)过点
作两条相互垂直的直线
与
交于
两点,
与
交于
两点,设
的面积为
的面积为
(
为坐标原点),求
的最小值.









(1)求

(2)过点












已知抛物线
的焦点为F,A为C上异于原点的任意一点,以点F为圆心且过点A的圆M与x轴正半轴交于点B,AB的延长线交C于点D,AF的延长线交C于点E.

(1)若点A的纵坐标为4,求圆M的方程;
(2)若线段AD的中点为G,求证:
轴;
(3)
的面积是否存在最小值?若存在,请求出此最小值;若不存在,请说明理由.


(1)若点A的纵坐标为4,求圆M的方程;
(2)若线段AD的中点为G,求证:

(3)

设点
,
的坐标分别为
,
,直线
和
相交于点
,且
和
的斜率之差是1.
(1)求点
的轨迹
的方程;
(2)过轨迹
上的点
,
,作圆
:
的两条切线,分别交
轴于点
,
.当
的面积最小时,求
的值.









(1)求点


(2)过轨迹









