刷题首页
题库
高中数学
题干
(本小题满分13分)已知抛物线
的焦点为
,过点F作直线l交抛物线C于A,B两点.椭圆E的中心在原点,焦点在x轴上,点F是它的一个顶点,且其离心率
.
(Ⅰ)分别求抛物线C和椭圆E的方程;
(Ⅱ)经过A,B两点分别作抛物线C的切线
,切线
相交于点M.证明
;
(Ⅲ)椭圆E上是否存在一点
,经过点
作抛物线C的两条切线
(
为切点),使得直线
过点F?若存在,求出抛物线C与切线
所围成图形的面积;若不存在,试说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2015-07-09 05:32:49
答案(点此获取答案解析)
同类题1
已知点
,直线
:
,
为平面上的动点,过点
作直线
的垂线,垂足为
,且满足
.
(1)求动点
的轨迹
的方程;
(2)过点
作直线
与轨迹
交于
,
两点,
为直线
上一点,且满足
,若
的面积为
,求直线
的方程.
同类题2
已知椭圆
过点
,椭圆
左右焦点分别为
,上项点为
,
为等边三角形.定义椭圆
上的点
的“伴随点”为
.
(1)求椭圆
的方程;
(2)求
的最大值;
(3)直线
交椭圆
于
、
两点,若点
、
的“伴随点”分别是
、
,且以
为直径的圆经过坐标原点
.椭圆
的右顶点为
,试探究
的面积与
的面积的大小关系,并证明.
同类题3
已知点
在抛物线
的准线上,
为
的焦点,过
点的直线与
相切于点
,则
的面积为( )
A.1
B.2
C.
D.4
同类题4
已知
是抛物线
的焦点,恰好又是双曲线
的右焦点,双曲线
过点
,且其离心率为
.
(1)求抛物线
和双曲线
的标准方程;
(2)已知直线
过点
,且与抛物线
交于
,
两点,以
为直径作圆
,设圆
与
轴交于点
,
,求
的最大值.
同类题5
在矩形
中,
,
,
、
、
、
分别为矩形四条边的中点,以
,
所在直线分别为
,
轴建立直角坐标系(如图所示).若
、
分别在线段
、
上.且
.
(Ⅰ)求证:直线
与
的交点
总在椭圆
:
上;
(Ⅱ)若
、
为曲线
上两点,且直线
与直线
的斜率之积为
,求证:直线
过定点.
相关知识点
平面解析几何
圆锥曲线
根据a、b、c求椭圆标准方程
椭圆中存在定点满足某条件问题
求抛物线的切线方程