- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 判断直线与抛物线的位置关系
- + 求直线与抛物线的交点坐标
- 求抛物线的切线方程
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
在直角坐标系
中,已知抛物线
:
,抛物线
的准线与
交于点
.
(1)过
作曲线
的切线,设切点为
,
,证明:以
为直径的圆经过点
;
(2)过点
作互相垂直的两条直线
、
,
与曲线
交于
、
两点,
与曲线
交于
、
两点,线段
,
的中点分别为
、
,试讨论直线
是否过定点?若过,求出定点的坐标;若不过,请说明理由.






(1)过






(2)过点
















已知抛物线
的方程为
,
为其焦点,过不在抛物线上的一点
作此抛物线的切线
,
为切点.且
.

(Ⅰ)求证:直线
过定点;
(Ⅱ)直线
与曲线
的一个交点为
,求
的最小值.








(Ⅰ)求证:直线

(Ⅱ)直线




已知抛物线C:y2=4x,顶点为O,动直线l:y=k(x+1)与抛物线C交于A,B两点,则
·
的值为( )


A.5 | B.-5 |
C.4 | D.-4 |