刷题首页
题库
高中数学
题干
已知椭圆
的中心在坐标原点,且经过点
,它的一个焦点与抛物线
的焦点重合.
(1)求椭圆
的方程;
(2)斜率为
的直线过点
,且与抛物线
交于
两点,设点
,
的面积为
,求
的值;
(3)若直线
过点
,且与椭圆
交于
两点,点
关于
轴的对称点为
,直线
的纵截距为
,证明:
为定值.
上一题
下一题
0.99难度 解答题 更新时间:2020-02-14 02:11:21
答案(点此获取答案解析)
同类题1
如图,已知
是椭圆
的左焦点,且椭圆
经过点
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)若过点
的直线
交椭圆
于
、
两点,线段
的中点为
,过
且与
垂直的直线与
轴和
轴分别交于
、
两点,记
、
的面积分别为
、
.若
,求直线
的方程.
同类题2
已知椭圆
:
的一个焦点为
,离心率为
.
(1)求
的标准方程;
(2)若动点
为
外一点,且
到
的两条切线相互垂直,求
的轨迹
的方程;
(3)设
的另一个焦点为
,过
上一点
的切线与(2)所求轨迹
交于点
,
,求证:
.
同类题3
已知椭圆
的左焦点为
,短轴的两个端点分别为A,B,且满足:
,且椭圆经过点
(1)求椭圆
的标准方程;
(2)设过点M
的动直线
(与X轴不重合)与椭圆C相交于P,Q两点,在X轴上是否存在一定点T,无论直线
如何转动,点T始终在以PQ为直径的圆上?若有,求点T的坐标,若无,说明理由。
同类题4
如图,定义:以椭圆中心为圆心,长轴为直径的圆叫做椭圆的“辅圆”.过椭圆第一象限内一点
P
作
x
轴的垂线交其“辅圆”于点
Q
,当点
Q
在点
P
的上方时,称点
Q
为点
P
的“上辅点”.已知椭圆
上的点
的上辅点为
.
(1)求椭圆
E
的方程;
(2)若
的面积等于
,求上辅点
Q
的坐标;
(3)过上辅点
Q
作辅圆的切线与
x
轴交于点
T
,判断直线
PT
与椭圆
E
的位置关系,并证明你的结论.
同类题5
已知椭圆
的焦距为4,且过点
.
(1)求椭圆
的标准方程;
(2)设
为椭圆
上一点,过点
作
轴的垂线,垂足为
,取点
,连接
,过点
作
的垂线交
轴于点
,点
是点
关于
轴的对称点,作直线
,问这样作出的直线
是否与椭圆
一定有唯一的公共点?并说明理由.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据椭圆过的点求标准方程
椭圆中的定值问题