刷题首页
题库
高中数学
题干
已知椭圆
:
(
)的左右焦点分别为
,
,点
在椭圆
上,且
.
(1)求椭圆的方程;
(2)点
P
,
Q
在椭圆
上,
O
为坐标原点,且直线
,
的斜率之积为
,求证:
为定值;
(3)直线
l
过点
且与椭圆
交于
A
,
B
两点,问在
x
轴上是否存在定点
M
,使得
为常数?若存在,求出点
M
坐标以及此常数的值;若不存在,请说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2020-02-14 06:03:43
答案(点此获取答案解析)
同类题1
已知椭圆
:
(
)的左,右顶点分别为
,
,长轴长为
,且经过点
.
(1)求椭圆
的标准方程;
(2)若
为椭圆
上异于
,
的任意一点,证明:直线
,
的斜率的乘积为定值;
(3)已知两条互相垂直的直线
,
都经过椭圆
的右焦点
,与椭圆
交于
,
和
,
四点,求四边形
面积的取值范围.
同类题2
已知椭圆的中心在原点,焦点在
轴上,长轴长是短轴长的2倍且经过点
,平行于
的直线
在
轴上的截距为
,
交椭圆于
两个不同点.
(1)求椭圆的标准方程以及
的取值范围;
(2)求证直线
与
轴始终围成一个等腰三角形.
同类题3
如图,直线
与圆
且与椭圆
相交于
两点.
(1)若直线
恰好经过椭圆的左顶点,求弦长
(2)设直线
的斜率分别为
,判断
是否为定值,并说明理由
(3)求
,面积的最小值.
同类题4
已知椭圆
的离心率是
,且经过抛物线
的焦点.
(1)求椭圆
的标准方程;
(2)经过原点作直线
(不与坐标轴重合)交椭圆于
,
两点,
轴于点
,点
为椭圆
上的点,且
,若直线
的斜率均存在,且分别记为
,求证:
为定值;并求出该值.
同类题5
已知
是椭圆
的左、右顶点,
是
上不同于
的任意一点,若
的离心率为
,则直线
的斜率之积为( )
A.
B.
C.
D.
相关知识点
平面解析几何
圆锥曲线
直线与圆锥曲线的位置关系
椭圆中的定点、定值
椭圆中的定值问题