- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 椭圆中的直线过定点问题
- 椭圆中存在定点满足某条件问题
- + 椭圆中的定值问题
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
焦点在x轴上的椭圆C:
经过点
,椭圆C的离心率为
.
,
是椭圆的左、右焦点,P为椭圆上任意点.
(1)求椭圆的标准方程;
(2)若点M为
的中点(O为坐标原点),过M且平行于OP的直线l交椭圆C于A,B两点,是否存在实数
,使得
;若存在,请求出
的值,若不存在,请说明理由.





(1)求椭圆的标准方程;
(2)若点M为




已知椭圆
经过点
,其左焦点为
.过
点的直线
交椭圆于
、
两点,交
轴的正半轴于点
.

(1)求椭圆
的方程;
(2)过点
且与
垂直的直线交椭圆于
、
两点,若四边形
的面积为
,求直线
的方程;
(3)设
,
,求证:
为定值.










(1)求椭圆

(2)过点







(3)设



椭圆
的左、右焦点分别为
,
,过点
的直线
与椭圆交于点
,
,
的周长为
.
(1)求椭圆的标准方程;
(2)若
.①当
时,求直线
的方程;
②证明
是定值,并求出此定值.









(1)求椭圆的标准方程;
(2)若



②证明

已知椭圆
的右焦点为
,左,右顶点分别为
,离心率为
,且过点
.
(1)求
的方程;
(2)设过点
的直线
交
于
,
(异于
)两点,直线
的斜率分别为
.若
,求
的值.





(1)求

(2)设过点










已知椭圆
的右焦点为
,且点
在椭圆C上.
(1)求椭圆C的标准方程;
(2)过椭圆
上异于其顶点的任意一点Q作圆
的两条切线,切点分别为
不在坐标轴上),若直线
在x轴,y轴上的截距分别为
,证明:
为定值;
(3)若
是椭圆
上不同两点,
轴,圆E过
,且椭圆
上任意一点都不在圆E内,则称圆E为该椭圆的一个内切圆,试问:椭圆
是否存在过焦点F的内切圆?若存在,求出圆心E的坐标;若不存在,请说明理由.



(1)求椭圆C的标准方程;
(2)过椭圆






(3)若






已知椭圆
,且椭圆C上恰有三点在集合
中.
(1)求椭圆C的方程;
(2)若点O为坐标原点,直线AB与椭圆交于A、B两点,且满足
,试探究:点O到直线AB的距离是否为定值.如果是,请求出定值:如果不是,请明说理由.
(3)在(2)的条件下,求
面积的最大值.


(1)求椭圆C的方程;
(2)若点O为坐标原点,直线AB与椭圆交于A、B两点,且满足

(3)在(2)的条件下,求

已知椭圆C:
的左、右焦点分别为
,
,点M为短轴的上端点,
,过
垂直于x轴的直线交椭圆C于A,B两点,且
.
1
求椭圆C的方程;
2
设经过点
且不经过点M的直线l与C相交于G,H两点
若
,
分别为直线MH,MG的斜率,求
的值.















已知椭圆
(
)的左右焦点分别为
,
,已知其离心率为
,且过点
.
(1)求椭圆的标准方程.
(2)设
,
是椭圆上位于
轴上方的两点,且直线
与直线
平行,
与
交于点
,探究
是否为定值?如果为定值,请求出该定值;如果不为定值,请说明理由.






(1)求椭圆的标准方程.
(2)设








