- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 椭圆中的直线过定点问题
- 椭圆中存在定点满足某条件问题
- + 椭圆中的定值问题
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知椭圆
的中心在坐标原点,焦点在坐标轴上,且经过
、
、
三点.
(1)求椭圆
的方程;
(2)若直线
:
(
)与椭圆
交于
、
两点,证明直线
与直线
的交点在直线
上.




(1)求椭圆

(2)若直线









已知椭圆C:
的离心率为
,左焦点为
,过点
且斜率为
的直线
交椭圆于A,B两点.
(1)求椭圆C的标准方程;
(2)在y轴上,是否存在定点E,使
恒为定值?若存在,求出E点的坐标和这个定值;若不存在,说明理由.






(1)求椭圆C的标准方程;
(2)在y轴上,是否存在定点E,使

已知椭圆
(
)的一个焦点坐标为
,点
在
上.
(1)求
的方程;
(2)直线
不经过原点
,且不平行于坐标轴,
与
有两个交点
、
,线段
中点为
,证明:直线
的斜率与直线
的斜率乘积为定值.





(1)求

(2)直线










已知直线
为椭圆
的右准线,直线
与
轴的交点记为
,过右焦点
的直线与椭圆交于
,
两点.

(1)设点
在直线上,且满足
,若直线
与线段
交于点
,求证:点
为线段
的中点;
(2)设
点的坐标为
,直线
与直线
交于点
,试问
是否为定值,若是,求出这个定值,若不是,请说明理由.









(1)设点







(2)设






已知圆
与椭圆
相交于点M(0,1),N(0,-1),且椭圆的离心率为
.

(1)求
的值和椭圆C的方程;
(2)过点M的直线
交圆O和椭圆C分别于A,B两点.
①若
,求直线
的方程;
②设直线NA的斜率为
,直线NB的斜率为
,问:
是否为定值? 如果是,求出定值;如果不是,说明理由.




(1)求

(2)过点M的直线

①若


②设直线NA的斜率为



已知椭圆
的焦距为2,离心率为
.
(1)求椭圆的方程;
(2)直线
经过椭圆的右焦点且不与坐标轴垂直,设直线
与椭圆交于
、
两点,
(
是坐标系的原点),证明:直线
与直线
的斜率之积为常数.


(1)求椭圆的方程;
(2)直线








在直角坐标系xOy中,动点P与定点
的距离和它到定直线
的距离之比是
,设动点P的轨迹为



A. (1)求动点P的轨迹E的方程; (2)设过F的直线交轨迹E的弦为AB,过原点的直线交轨迹E的弦为CD,若 ![]() ![]() |
已知椭圆
的两焦点分别为
,
,
是椭圆在第一象限内的一点,并满足
,过
作倾斜角互补的两直线
、
分别交椭圆于
、
两点.
(1)求
点坐标;
(2)当直线
经过点
时,求直线
的方程;
(3)求证直线
的斜率为定值.










(1)求

(2)当直线



(3)求证直线

如图,
分别是椭圆
的左、右焦点,且焦距为
,动弦
平行于
轴,且
.

(1)求椭圆
的方程;
(2)若点
是椭圆
上异于点
、
的任意一点,且直线
、
分别与
轴交于点
、
,若
、
的斜率分别为
、
,求证:
是定值.







(1)求椭圆

(2)若点














如图,已知椭圆
的长轴
,长为4,过椭圆的右焦点
作斜率为
(
)的直线交椭圆于
、
两点,直线
,
的斜率之积为
.

(1)求椭圆
的方程;
(2)已知直线
,直线
,
分别与
相交于
、
两点,设
为线段
的中点,求证:
.











(1)求椭圆

(2)已知直线








