刷题首页
题库
高中数学
题干
已知椭圆
的焦距为2,离心率为
.
(1)求椭圆的方程;
(2)直线
经过椭圆的右焦点且不与坐标轴垂直,设直线
与椭圆交于
、
两点,
(
是坐标系的原点),证明:直线
与直线
的斜率之积为常数.
上一题
下一题
0.99难度 解答题 更新时间:2020-01-11 08:41:42
答案(点此获取答案解析)
同类题1
设点
,
分别是椭园C:
的左、右焦点,且椭圆C上的点到
的距离的最小值为
,点M,N是椭圆C上位于x轴上方的两点,且向量
与向量
平行.
求椭圆C的方程;
当
时,求
的面积;
当
时,求直线
的方程.
同类题2
已知某椭圆C,它的中心在坐标原点,左焦点为F(﹣
,0),且过点D(2,0).
(1)求椭圆C的标准方程;
(2)若已知点A(1,
),当点P在椭圆C上变动时,求出线段PA中点M的轨迹方程.
同类题3
已知离心率为
的椭圆
过点
,
分别为椭圆
的右顶点和上顶点,点
在椭圆
上且不与四个顶点重合.
(1)求椭圆
的标准方程;
(2)若直线
与
轴交于
,直线
与
轴交于
,试探究
是否为定值?若是,请求出该定值;若不是,请说明理由.
同类题4
设椭圆
的左、右焦点分别为
、
,上顶点为
,在
轴负半轴上有一点
,满足
为线段
的中点,且
.
(1)求椭圆
的离心率;
(2)若过
、
、
三点的圆与直线
相切,求椭圆
的方程;
(3)在(2)的条件下,过右焦点
作斜率为
的直线与椭圆
交于
、
两点,在
轴上是否存在点
使得以
、
为邻边的平行四边形是菱形?如果存在,求出
的取值范围,若不存在,请说明理由.
同类题5
已知点
在椭圆
:
(
)上,且点
到左焦点
的距离为3.
(1)求椭圆
的标准方程;
(2)设
为坐标原点,与直线
平行的直线
交椭圆
于不同两点
、
,求
面积的最大值.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
椭圆中的定值问题