- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 椭圆中的直线过定点问题
- 椭圆中存在定点满足某条件问题
- + 椭圆中的定值问题
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知焦点在
轴上的抛物线
过点
,椭圆
的两个焦点分别为
,其中
与
的焦点重合,过
与长轴垂直的直线交椭圆
于
两点且
,曲线
是以原点为圆心以
为半径的圆.
(1)求
与
及
的方程;
(2)若动直线
与圆
相切,且与
交与
两点,三角形
的面积为
,求
的取值范围.













(1)求



(2)若动直线







已知圆
,点
,动点
在
上,线段
的垂直平分线与直线
相交于点
,
的轨迹是曲线
.
(1)求
的方程;
(2)已知过点
的直线
与
交于
两点,
是
与
轴正半轴的交点,设直线
的斜率分别为
,证明:
为定值.









(1)求

(2)已知过点










已知椭圆
,点
的坐标为
,过点
且斜率为
的直线
与椭圆
相交于
两点.
(1)求椭圆
的离心率;
(2)对于任意的
,
是否为定值?若是,求出这个定值;若不是,说明理由.








(1)求椭圆

(2)对于任意的


已知椭圆
左右焦点为
,左顶点为A(-2.0),上顶点为B,且∠
=
.
(1)求椭圆C的方程;
(2)探究
轴上是否存在一定点P,过点P的任意直线与椭圆交于M、N不同的两点,M、N不与点A重合,使得
为定值,若存在,求出点P;若不存在,说明理由.




(1)求椭圆C的方程;
(2)探究


如图,曲线
是以原点O为中心、
为焦点的椭圆的一部分,曲线
是以O为顶点、
为焦点的抛物线的一部分,A是曲线
和
的交点且
为钝角,若
,
.

(1)求曲线
和
的方程;
(2)过
作一条与
轴不垂直的直线,分别与曲线
依次交于B、C、D、E四点,若G为CD中点、H为BE中点,问
是否为定值?若是求出定值;若不是说明理由.










(1)求曲线


(2)过




已知椭圆
:
经过点
,离心率为
.
(1)求椭圆
的标准方程;
(2)过坐标原点
作直线
交椭圆
于
、
两点,过点
作
的平行线交椭圆
于
、
两点.是否存在常数
, 满足
?若存在,求出这个常数;若不存在,请说明理由.




(1)求椭圆

(2)过坐标原点












直线
与椭圆
交于
,
两点,已知
,
,若椭圆的离心率
,又经过点
,
为坐标原点.
(1)求椭圆的方程;
(2)当
时,试问:
的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.











(1)求椭圆的方程;
(2)当


已知抛物线
:
与椭圆
:
有相同的焦点
,且两曲线相交于点
,过
作斜率为
的动直线
,交椭圆
于
,
两点.
(Ⅰ)求抛物线
和椭圆
的方程;
(Ⅱ)若
为椭圆
的左顶点,直线
,
的斜率分别为
,
,求证:
为定值,并求出该定值.












(Ⅰ)求抛物线


(Ⅱ)若






