刷题首页
题库
高中数学
题干
已知椭圆
:
经过点
,离心率为
.
(1)求椭圆
的标准方程;
(2)过坐标原点
作直线
交椭圆
于
、
两点,过点
作
的平行线交椭圆
于
、
两点.是否存在常数
, 满足
?若存在,求出这个常数;若不存在,请说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2019-01-30 10:37:36
答案(点此获取答案解析)
同类题1
已知动直线
与焦点坐标为
,离心率为
的曲线
相交于
两点(
为曲线
的坐标原点),且
.
(1)求曲线
的标准方程;
(2)证明:
和
都为定值.
同类题2
已知椭圆
的离心率为
,且过点
.
(1)求椭圆
的方程;
(2)若
是椭圆
上的两个动点,且
的角平分线总垂直于
轴,求证:直线
的斜率为定值.
同类题3
已知椭圆
:
(
)的左,右顶点分别为
,
,长轴长为
,且经过点
.
(1)求椭圆
的标准方程;
(2)若
为椭圆
上异于
,
的任意一点,证明:直线
,
的斜率的乘积为定值;
(3)已知两条互相垂直的直线
,
都经过椭圆
的右焦点
,与椭圆
交于
,
和
,
四点,求四边形
面积的取值范围.
同类题4
已知椭圆
的离心率
,左、右焦点分别为
、
,
为椭圆
上一点,
,且
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)设椭圆
的左、右顶点为
、
,过
、
分别作
轴的垂直
、
,椭圆
的一条切线
与
、
交于
、
两点,求证:
的定值.
同类题5
(本小题满分12分)已知椭圆
的中心在坐标原点,右焦点为
,
、
是椭圆
的左、右顶点,
是椭圆
上异于
、
的动点,且
面积的最大值为
.
(1)求椭圆
的方程;
(2)是否存在一定点
(
),使得当过点
的直线
与曲线
相交于
,
两点时,
为定值?若存在,求出定点和定值;若不存在,请说明理由.
相关知识点
平面解析几何
圆锥曲线
直线与圆锥曲线的位置关系
椭圆中的定点、定值
椭圆中的定值问题