- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 椭圆中的直线过定点问题
- 椭圆中存在定点满足某条件问题
- + 椭圆中的定值问题
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知椭圆
的离心率为
,直线
过椭圆
的右焦点
,过
的直线
交椭圆
于
两点(均异于左、右顶点).
(1)求椭圆
的方程;
(2)已知直线
,
为椭圆
的右顶点. 若直线
交
于点
,直线
交
于点
,试判断
是否为定值,若是,求出定值;若不是,说明理由.









(1)求椭圆

(2)已知直线










已知椭圆
的焦点是双曲线
的顶点,椭圆
的顶点是双曲线
的焦点.
(1)求椭圆
的离心率;
(2)若
、
分别是椭圆
的左、右顶点,
为椭圆
上异于
、
的一点.求证:直线
和直线
的斜率之积为定值.




(1)求椭圆

(2)若









已知点Q是圆
上的动点,点
,若线段QN的垂直平分线MQ于点P.
(I)求动点P的轨迹E的方程
(II)若A是轨迹E的左顶点,过点D(-3,8)的直线l与轨迹E交于B,C两点,求证:直线AB、AC的斜率之和为定值.


(I)求动点P的轨迹E的方程
(II)若A是轨迹E的左顶点,过点D(-3,8)的直线l与轨迹E交于B,C两点,求证:直线AB、AC的斜率之和为定值.
已知椭圆
的离心率
,其左、右顶点分别为点
,且点
关于直线
对称的点在直线
上.
(1)求椭圆
的方程;
(2)若点
在椭圆
上,点
在圆
上,且
都在第一象限,
轴,若直线
与
轴的交点分别为
,判断
是否为定值,若是定值,求出该定值;若不是定值,说明理由.






(1)求椭圆

(2)若点










已知椭圆C的方程为
,离心率为
,它的一个顶点恰好是抛物线
的焦点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过动点
的直线交
轴的负半轴于点
,交C于点
(
在第一象限),且
是线段
的中点,过点
作x轴的垂线交C于另一点
,延长线
交C于点
.
(i)设直线
,
的斜率分别为
,
,证明:
;
(ii)求直线
的斜率的最小值.



(Ⅰ)求椭圆C的方程;
(Ⅱ)过动点











(i)设直线





(ii)求直线

已知椭圆
的方程为
,
,
为椭圆
的左右顶点,
为椭圆
上不同于
.
的动点,直线
与直线
,
分别交于
,
两点,若
,则过
,
,
三点的圆必过
轴上不同于点
的定点,其坐标为__________.




















已知椭圆
的离心率为
,椭圆
截直线
所得的线段的长度为
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)设直线
与椭圆
交于
两点,点
是椭圆
上的点,
是坐标原点,若
,判定四边形
的面积是否为定值?若为定值,求出定值;如果不是,请说明理由.





(Ⅰ)求椭圆

(Ⅱ)设直线








已知椭圆
:
的离心率为
, 且以两焦点为直径的圆的面积为
。
(1)求椭圆
的标准方程;
(2)若直线
:
与椭圆
相交于
,
两点,点
的坐标为
,问直线
与
的斜率之和
是否为定值?若是,求出该定值,若不是,试说明理由.




(1)求椭圆

(2)若直线










已知椭圆
的离心率为
,短轴长为2;
(1)求椭圆的标准方程;
(2)设椭圆上顶点
,左、右顶点分别为
、
.直线
且交椭圆于
、
两点,点E 关于
轴的对称点为点
,求证:
.


(1)求椭圆的标准方程;
(2)设椭圆上顶点








