刷题首页
题库
高中数学
题干
已知椭圆
的离心率为
,短轴长为2;
(1)求椭圆的标准方程;
(2)设椭圆上顶点
,左、右顶点分别为
、
.直线
且交椭圆于
、
两点,点E 关于
轴的对称点为点
,求证:
.
上一题
下一题
0.99难度 解答题 更新时间:2019-05-06 11:49:01
答案(点此获取答案解析)
同类题1
已知椭圆的中心在原点,焦点在
轴上,离心率为
,且经过点
,直线
交椭圆于不同的两点
.
(1)求椭圆的方程;
(2)求
的取值范围;
(3)若直线
不过点
,求证:直线
的斜率互为相反数.
同类题2
已如椭圆
E
:
(
)的离心率为
,点
在
E
上.
(1)求
E
的方程:
(2)斜率不为0的直线
l
经过点
,且与
E
交于
P
,
Q
两点,试问:是否存在定点
C
,使得
?若存在,求
C
的坐标:若不存在,请说明理由
同类题3
已知椭圆
的离心率
,过焦点且垂直于x轴的直线被椭圆截得的线段长为3
(1)求椭圆的方程;
(2)已知P为直角坐标平面内一定点,动直线l:
与椭圆交于A、B两点,当直线PA与直线PB的斜率均存在时,若直线PA与PB的斜率之和为与t无关的常数,求出所有满足条件的定点P的坐标.
同类题4
已知以原点
为中心的椭圆的一条准线方程为
,离心率
,
是椭圆上的动点.
(Ⅰ)若
的坐标分别是
,求
的最大值;
(Ⅱ)如图,点
的坐标为
,
是圆
上的点,
是点
在
轴上的射影,点
满足条件:
,
,求线段
的中点
的轨迹方程.
同类题5
已知椭圆
的离心率为
,且过点
(Ⅰ)求椭圆
的方程;
(Ⅱ)设直线
与圆
相切于点
,且
与椭圆
只有一个公共点
.
①求证:
;
②当
为何值时,
取得最大值?并求出最大值.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的离心率
根据离心率求椭圆的标准方程
椭圆中的定值问题