刷题首页
题库
高中数学
题干
如图,已知
,
为椭圆
短轴的两个端点,且椭圆的离心率为
.
(1)求椭圆
的方程;
(2)若经过点
的直线
与椭圆
的另一个交点记为
,经过原点
且与
垂直的直线记为
,且直线
与直线
的交点记为
,证明:
是定值,并求出这个定值.
上一题
下一题
0.99难度 解答题 更新时间:2020-02-25 02:14:29
答案(点此获取答案解析)
同类题1
已知
、
分别为椭圆
:
的上、下焦点,其中
也是抛物线
:
的焦点,点
是
与
在第二象限的交点,且
.
(Ⅰ)求椭圆的方程;
(Ⅱ)已知点
(1,3)和圆
:
,过点
的动直线
与圆
相交于不同的两点
,在线段
取一点
,满足:
,
(
且
).
求证:点
总在某定直线上.
同类题2
已知椭圆
过点
,离心率为
.
(1)求椭圆的标准方程;
(2)过椭圆的上顶点作直线
交抛物线
于
两点,
为原点.
①求证:
;
②设
、
分别与椭圆相交于
、
两点,过原点
作直线
的垂线
,垂足为
,证明:
为定值.
同类题3
在平面直角坐标系中,椭圆
,右焦点
为
.
(1)若其长半轴长为
,焦距为
,求其标准方程.
(2)证明该椭圆上一动点
到点
的距离
的最大值是
.
同类题4
已知椭圆
的对称轴为坐标轴,且抛物线
的焦点
是椭圆
的一个焦点,以
为圆心,以椭圆
的短半轴长为半径的圆与直线
相切.
(1)求椭圆
的方程;
(2)已知直线
与椭圆
交于
两点,且椭圆
上存在点
满足
,求
的值.
同类题5
已知椭圆
的离心率为
,椭圆
的四个顶点围成的四边形的面积为
.
(1)求椭圆
的标准方程;
(2)设
为椭圆
的右顶点,过点
且斜率不为0的直线
与椭圆
相交于
,
两点,记直线
,
的斜率分别为
,
,求证:
为定值.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
椭圆中的定值问题