刷题首页
题库
高中数学
题干
已知椭圆
的一个焦点与抛物线
的焦点重合,且抛物线的准线被椭圆
截得的弦长为1,
是直线
上一点,过点
且与
垂直的直线交椭圆于
两点.
(1)求椭圆
的标准方程;
(2)设直线
的斜率分别为
,求证:
成等差数列.
上一题
下一题
0.99难度 解答题 更新时间:2020-02-25 01:52:11
答案(点此获取答案解析)
同类题1
已知
为坐标原点,圆
,定点
,点
是圆
上一动点,线段
的垂直平分线交圆
的半径
于点
,点
的轨迹为
.
(1)求曲线
的方程;
(2)已知点
是曲线
上但不在坐标轴上的任意一点,曲线
与
轴的交点分别为
,直线
和
分别与
轴相交于
两点,请问线段长之积
是否为定值?如果还请求出定值,如果不是请说明理由;
(3)在(2)的条件下,若点
坐标为(-1,0),设过点
的直线
与
相交于
两点,求
面积的最大值.
同类题2
如图,过椭圆
的左焦点
作
轴的垂线交椭圆于点
,点
和点
分别为椭圆的右顶点和上顶点,
.
(1)求椭圆的离心率
;
(2)过右焦点
作一条弦
,使
,若
的面积为
,求椭圆的方程.
同类题3
如图所示,在平面直角坐标系
中,已知椭圆
:
(
),
,
,
,
是椭圆上的四个动点,且
,
,线段
与
交于椭圆
内一点
.当点
的坐标为
,且
,
分别为椭圆
的上顶点和右顶点重合时,四边形
的面积为4.
(Ⅰ)求椭圆
的标准方程;
(Ⅱ)证明:当点
,
,
,
在椭圆上运动时,
(
)是定值.
同类题4
已知椭圆
的一个焦点
,两个焦点与短轴的一个端点构成等边三角形.
(Ⅰ)求椭圆
的标准方程;
(Ⅱ)过焦点
作
轴的垂线交椭圆上半部分于点
,过点
作椭圆
的弦
,设弦
所在的直线分别交
轴于
、
两点,若
为等腰三角形时,问直线
的斜率是否为定值?若是,求出这个定值;若不是,请说明理由.
同类题5
已知椭圆
的长轴长为
,焦距为2,抛物线
的准线经过椭圆
的左焦点
.
(1)求椭圆
与抛物线
的方程;
(2)直线
经过椭圆
的上顶点且
与抛物线
交于
,
两点,直线
,
与抛物线
分别交于点
(异于点
),
(异于点
),证明:直线
的斜率为定值.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
椭圆中的定值问题