- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 椭圆中的直线过定点问题
- + 椭圆中存在定点满足某条件问题
- 椭圆中的定值问题
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知椭圆C:
=1(a>b>0)的离心率e=
,短轴长为
.

(1)求椭圆C的标准方程.
(2)如图所示,椭圆C的左顶点为A,过原点O的直线(与坐标轴不重合)与椭圆C交于P,Q两点,直线PA,QA分别与y轴交于M,N两点.试问以MN为直径的圆是否经过定点(与直线PQ的斜率无关)?并说明理由.




(1)求椭圆C的标准方程.
(2)如图所示,椭圆C的左顶点为A,过原点O的直线(与坐标轴不重合)与椭圆C交于P,Q两点,直线PA,QA分别与y轴交于M,N两点.试问以MN为直径的圆是否经过定点(与直线PQ的斜率无关)?并说明理由.
如图所示,A,B分别是椭圆C:
=1(a>b>0)的左右顶点,F为其右焦点,2是|AF|与|FB|的等差中项,
是|AF|与|FB|的等比中项.点P是椭圆C上异于A,B的任一动点,过点A作直线l⊥x轴.以线段AF为直径的圆交直线AP于点A,M,连接FM交直线l于点Q.
(1)求椭圆C的方程;
(2)试问在x轴上是否存在一个定点N,使得直线PQ必过该定点N?若存在,求出点N的坐标,若不存在,说明理由.


(1)求椭圆C的方程;
(2)试问在x轴上是否存在一个定点N,使得直线PQ必过该定点N?若存在,求出点N的坐标,若不存在,说明理由.

己知
,
分别为椭圆C:
的左、右焦点,点
在椭圆C上.
(1)求
的最小值;
(2)已知直线l:
与椭圆C交于两点A、B,过点
且平行于直线l的直线交椭圆C于另一点Q,问:四边形PABQ能否成为平行四边形?若能,请求出直线l的方程;若不能,请说明理由.




(1)求

(2)已知直线l:


已知椭圆
,离心率为
,两焦点分别为
,过
的直线交椭圆
于
、
两点,且
的周长为16.
(1)求椭圆
的方程;
(2)过点
且斜率为1的直线交椭圆与PQ两点,求 |PQ|的长.








(1)求椭圆

(2)过点

已知
分别为椭圆C:
的左、右焦点,点
在椭圆上,且
轴,
的周长为6.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)E,F是椭圆C上异于点
的两个动点,如果直线PE与直线PF的倾斜角互补,证明:直线EF的斜率为定值,并求出这个定值.





(Ⅰ)求椭圆的标准方程;
(Ⅱ)E,F是椭圆C上异于点

折纸是一项艺术,可以折出很多数学图形.将一张圆形纸片放在平面直角坐标系中,圆心B(-1,0),半径为4,圆内一点A为抛物线
的焦点.若每次将纸片折起一角,使折起部分的圆弧的一点
始终与点A重合,将纸展平,得到一条折痕,设折痕与线段
B的交点为P.
(Ⅰ)将纸片展平后,求点P的轨迹C的方程;
(Ⅱ)已知过点A的直线l与轨迹C交于R,S两点,当l无论如何变动,在AB所在直线上存在一点T,使得
所在直线一定经过原点,求点T的坐标.



(Ⅰ)将纸片展平后,求点P的轨迹C的方程;
(Ⅱ)已知过点A的直线l与轨迹C交于R,S两点,当l无论如何变动,在AB所在直线上存在一点T,使得

如图,椭圆
:
的左、右焦点分别为
,椭圆
上一点与两焦点构成的三角形的周长为
,离心率为
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)过点
的直线
交椭圆
于
两点,问在
轴上是否存在定点
,使得
为定值?证明你的结论.






(Ⅰ)求椭圆

(Ⅱ)过点








已知椭圆:
的离心率为
,圆
的圆心与椭圆C的上顶点重合,点P的纵坐标为
.
(1)求椭圆C的标准方程;
(2)若斜率为2的直线l与椭圆C交于A,B两点,探究:在椭圆C上是否存在一点Q,使得
,若存在,求出点Q的坐标;若不存在,请说明理由.




(1)求椭圆C的标准方程;
(2)若斜率为2的直线l与椭圆C交于A,B两点,探究:在椭圆C上是否存在一点Q,使得

已知椭圆 C:
的离心率为
,以短轴为直径的圆被直线 x+y-1 = 0 截得的弦长为
.
(1) 求椭圆 C 的方程;
(2) 设 A, B 分别为椭圆的左、右顶点, D 为椭圆右准线 l 与 x 轴的交点, E 为l上的另一个点,直线 EB 与椭圆交于另一点F,是否存在点 E,使
R)? 若存在,求出点 E 的坐标;若不存在,请说明理由



(1) 求椭圆 C 的方程;
(2) 设 A, B 分别为椭圆的左、右顶点, D 为椭圆右准线 l 与 x 轴的交点, E 为l上的另一个点,直线 EB 与椭圆交于另一点F,是否存在点 E,使
