刷题首页
题库
高中数学
题干
已知椭圆
,离心率为
,两焦点分别为
,过
的直线交椭圆
于
、
两点,且
的周长为16.
(1)求椭圆
的方程;
(2)过点
且斜率为1的直线交椭圆与PQ两点,求 |PQ|的长.
上一题
下一题
0.99难度 解答题 更新时间:2018-11-12 01:01:45
答案(点此获取答案解析)
同类题1
已知椭圆对称轴为坐标轴,离心率
且经过点
,求该椭圆的标准方程.
同类题2
已知椭圆
的离心率为
,以椭圆的上焦点
为圆心,椭圆的短半轴为半径的圆与直线
截得的弦长为
.
(1)求椭圆的方程;
(2)过椭圆左顶点做两条互相垂直的直线
,
,且分别交椭圆于
,
两点(
,
不是椭圆的顶点),探究直线
是否过定点,若过定点则求出定点坐标,否则说明理由.
同类题3
(本小题满分12分)已知椭圆
(
)的离心率为
,右焦点到直线
的距离为
.
(1)求椭圆
的方程;
(2)已知点
,斜率为
的直线
交椭圆
于两个不同点
.
,设直线
与
的斜率分别为
,
,①若直线
过椭圆
的左顶点,求此时
,
的值;②试猜测
,
的关系,并给出你的证明.
同类题4
已知椭圆
E
:
的左、右焦点分别为
F
1
,
F
2
,离心率为
,点
A
在椭圆
E
上,∠
F
1
AF
2
=60°,△
F
1
AF
2
的面积为4
.
(1)求椭圆
E
的方程;
(2)过原点
O
的两条互相垂直的射线与椭圆
E
分别交于
P
,
Q
两点,证明:点
O
到直线
PQ
的距离为定值,并求出这个定值.
同类题5
已知椭圆
E
:
+
=1(
a
>
b
>0)的离心率为
,焦点到相应准线的距离为
.
(1) 求椭圆
E
的标准方程;
(2) 已知
P
(
t
,0)为椭圆
E
外一动点,过点
P
分别作直线
l
1
和
l
2
,直线
l
1
和
l
2
分别交椭圆
E
于点
A
,
B
和点
C
,
D
,且
l
1
和
l
2
的斜率分别为定值
k
1
和
k
2
,求证:
为定值.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的离心率
根据离心率求椭圆的标准方程
椭圆中存在定点满足某条件问题