- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 椭圆中的直线过定点问题
- + 椭圆中存在定点满足某条件问题
- 椭圆中的定值问题
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知椭圆C的中心在坐标原点,焦点在x轴上,离心率等于
,它的一个顶点恰好是抛物线
的焦点.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若直线
与椭圆C相交于A、B两点,在y轴上是否存在点D,使直线AD与BD关于y轴对称?若存在,求出点D坐标;若不存在,请说明理由.


(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若直线

如图,在平面直角坐标系
中,已知椭圆
的离心率为
,且过点
.设
为椭圆的右焦点,
为椭圆上关于原点对称的两点,连结
并延长,分别交椭圆于
两点.

(1)求椭圆的标准方程;
(2)设直线
的斜率分别为
,是否存在实数
,使得
?若存在,求出实数
的值;若不存在,请说明理由.









(1)求椭圆的标准方程;
(2)设直线





已知椭圆
:
经过点
,且离心率为
,
,
是椭圆
的左,右焦点.
(1)求椭圆
的方程;
(2)若点
,
是椭圆上
关于
轴对称两点(
,
不是长轴的端点),点
是椭圆
上异于
,
的一点,且直线
,
分别交
轴于点
,
,求证:直线
与直线
的交点
在定圆上.







(1)求椭圆

(2)若点


















已知椭圆
的离心率为
,其左顶点
在圆
上.

(1)求椭圆
的方程;
(2)若点
为椭圆
上不同于点
的点,直线
与圆
的另一个交点为
.是否存在点
,使得
?若存在,求出点
的坐标;若不存在,说明理由.





(1)求椭圆

(2)若点









如图,已知直线
的右焦点
,且交椭圆
于
两点,点
在直线
上的射影依次为点
.

(Ⅰ)已知抛物线
的焦点为椭圆
的上顶点.
①求椭圆
的方程;
②若直线
交
轴于点
,且
,当
变化时,求
的值;
(Ⅱ)连接
,试探索当
变化时,直线
是否相交于一定点
?若交于定点
,请求出
点的坐标并给予证明;否则说明理由.








(Ⅰ)已知抛物线


①求椭圆

②若直线






(Ⅱ)连接






已知椭圆
的左右焦点分别为
,直线
经过椭圆的右焦点与椭圆交于
两点,且
.
(I)求直线
的方程;
(II)已知过右焦点
的动直线
与椭圆
交于
不同两点,是否存在
轴上一定点
,使
?(
为坐标原点)若存在,求出点
的坐标;若不存在说明理由.






(I)求直线

(II)已知过右焦点









已知长度为
的线段
的两个端点
、
分别在
轴和
轴上运动,动点
满足
,设动点
的轨迹为曲线
.
(1)求曲线
的方程;
(2)过点
且斜率不为零的直线
与曲线
交于两点
、
,在
轴上是否存在定点
,使得直线
与
的斜率之积为常数.若存在,求出定点
的坐标以及此常数;若不存在,请说明理由.










(1)求曲线

(2)过点










已知椭圆
=1(a>b>0)的左、右焦点分别为F1,F2,过左焦点F1(-2,0)作x轴的垂线交椭圆于P,Q两点,PF2与y轴交于E
,A,B是椭圆上位于PQ两侧的动点.
(1)求椭圆的离心率e和标准方程;
(2)当∠APQ=∠BPQ时,直线AB的斜率kAB是否为定值?若是,求出该定值;若不是,请说明理由.


(1)求椭圆的离心率e和标准方程;
(2)当∠APQ=∠BPQ时,直线AB的斜率kAB是否为定值?若是,求出该定值;若不是,请说明理由.
已知椭圆
以
,
为焦点,且离心率
(1)求椭圆
的方程;
(2)过
点斜率为
的直线
与椭圆
有两个不同交点
、
,求
的范围;
(3)设椭圆
与
轴正半轴、
轴正半轴的交点分别为
、
,是否存在直线
,满足(2)中的条件且使得向量
与
垂直?如果存在,写出
的方程;如果不存在,请说明理由.




(1)求椭圆

(2)过







(3)设椭圆









已知椭圆
,四点
、
、
、
中恰有三点在椭圆
上。
(1)求
的方程:
(2)椭圆
上是否存在不同的两点
、
关于直线
对称?若存在,请求出直线
的方程,若不存在,请说明理由;
(3)设直线
不经过点
且与
相交于
、
两点,若直线
与直线
的斜率的和为1,求证:
过定点。






(1)求

(2)椭圆





(3)设直线







