刷题首页
题库
高中数学
题干
已知椭圆
以
,
为焦点,且离心率
(1)求椭圆
的方程;
(2)过
点斜率为
的直线
与椭圆
有两个不同交点
、
,求
的范围;
(3)设椭圆
与
轴正半轴、
轴正半轴的交点分别为
、
,是否存在直线
,满足(2)中的条件且使得向量
与
垂直?如果存在,写出
的方程;如果不存在,请说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2018-10-16 08:42:54
答案(点此获取答案解析)
同类题1
已知椭圆
的离心率为
,直线
过椭圆的左顶点,则椭圆方程为( )
A.
B.
C.
D.
同类题2
已知椭圆
的离心率
,A,B是椭圆的左、右顶点,P是椭圆上不同于A,B的一点,直线PA,PB倾斜角分别为
,则
.
同类题3
已知椭圆
:
的离心率
,且直线
与椭圆
有且只有一个公共点
.
(1)求椭圆
的标准方程;
(2)设直线
与
轴交于点
,过点
的直线
与椭圆
交于不同的两点
,若
,求实数
的取值范围.
同类题4
已知椭圆
的离心率
,左、右焦点分别为
,点
,点
在线段
的中垂线上.
(1)求椭圆
的方程;
(2)设直线
与椭圆
交于
两点,直线
与
的倾斜角分别为
,且
,求证:直线
过定点,并求该定点的坐标.
同类题5
已知椭圆
的离心率为
,右焦点为
,斜率为1的直线
与椭圆
交于
两点,以
为底边作等腰三角形,顶点为
.
(1)求椭圆
的方程;
(2)求
的面积.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的离心率
根据离心率求椭圆的标准方程
求直线与椭圆的交点坐标