刷题首页
题库
高中数学
题干
如图,已知直线
的右焦点
,且交椭圆
于
两点,点
在直线
上的射影依次为点
.
(Ⅰ)已知抛物线
的焦点为椭圆
的上顶点.
①求椭圆
的方程;
②若直线
交
轴于点
,且
,当
变化时,求
的值;
(Ⅱ)连接
,试探索当
变化时,直线
是否相交于一定点
?若交于定点
,请求出
点的坐标并给予证明;否则说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2018-09-07 03:43:42
答案(点此获取答案解析)
同类题1
设椭圆
:
的左右焦点分别为
,
,上顶点为
.
(Ⅰ)若
.
(
i
)求椭圆
的离心率;
(
ii
)设直线
与椭圆
的另一个交点为
,若
的面积为
,求椭圆
的标准方程;
(Ⅱ)由椭圆
上不同三点构成的三角形称为椭圆的内接三角形,当
时,若以
为直角顶点的椭圆
的内接等腰直角三角形恰有3个,求实数
的取值范围.
同类题2
已知椭圆
的离心率为
,直线
经过椭圆
的左顶点
.
(1)求椭圆
的方程;
(2)设直线
(
)交椭圆
于
两点(
不同于点
).过原点
的一条直线与直线
交于点
,与直线
分别交于点
.
(ⅰ)当
时,求
的最大值;
(ⅱ)若
,求证:点
在一条定直线上.
同类题3
已知椭圆
的左焦点为
,过点
作倾斜角为
的直线与圆
相交的弦长为
,则椭圆的标准方程为( )
A.
B.
C.
D.
同类题4
已知椭圆
的两个焦点与短轴的一个端点是等边三角形的三个顶点,且长轴长为4.
求椭圆
E
的方程;
若
A
是椭圆
E
的左顶点,经过左焦点
F
的直线
l
与椭圆
E
交于
C
,
D
两点,求
与
为坐标原点
的面积之差绝对值的最大值.
已知椭圆
E
上点
处的切线方程为
,
T
为切点
若
P
是直线
上任意一点,从
P
向椭圆
E
作切线,切点分别为
N
,
M
,求证:直线
MN
恒过定点,并求出该定点的坐标.
同类题5
如图,设
为坐标原点,点
是椭圆
的右焦点,
上任意一点到该椭圆的两个焦点的距离之和为
.分别过
的两条直线
与
相交于点
(异于
两点).
(1)求椭圆
的方程:
(2)若
分别为直线
与
的斜率,求
的值:
(3)若
求证:直线
与
的斜率之和为定值,并将此命题加以推广。写出更一般的结论(不用证明).
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
根据直线与椭圆的位置关系求参数或范围